

Outline

- Introduction
 - Detector design
 - Design Study Organization
 - DBD Editors
- Areas of SiD included in DBD
 - summary for detector components
- Simulation/reconstruction, PFA, Benchmarking
 - see next talk by Tim Barklow
- SiD Costing
- Summary
- This is a short talk about a large design study summarize main features of SiD, current status, and a word about the future.

SiD Detector overview

SID Rationale

 A compact, cost-constrained detector designed to make precision measurements and be sensitive to a wide range of new phenomena

Design choices

- Compact design with 5 T field.
- Robust all-silicon vertexing and tracking system with excellent momentum resolution
- Time-stamping for single bunch crossings.
- Highly granular Calorimetry optimized for Particle Flow
- Iron flux return/muon identifier is part of the SiD self-shielding
- Detector is designed for rapid push-pull operation

SiD Detailed Baseline Design

Creating the SiD DBD

Main DBD Editors:

Phil Burrows (Oxford)
Lucie Linssen (CERN)
Mark Oreglia (UChicago)
Marcel Stanitzki (DESY)
Andy White (UTA)

CHAPTER EDITORS

Vertex Detector W. Cooper⁶, R Lipton⁶

Silicon Tracking
W. Cooper⁶, M. Demarteau⁷, T. Nelson⁸

Calorimetry R. Frey⁹, A. White⁵, L. Xia⁷

> Muon System H. Band¹⁰, G. Fisk⁶

Superconducting Magnet System W. Craddock⁸, M. Oriunno⁸

Engineering, Integration and the Machine Detector Interface P. Burrows¹, T. Markiewicz⁸

Forward Systems
T. Maruyama⁸, B. Schumm¹¹

Electronics and DAQ G. Haller⁸

Simulation and Reconstruction N. Graf⁸, J. Strube²

Benchmarking D. Asner¹², T. Barklow⁸, P. Roloff²

> Costs M. Breidenbach⁸

SiD Detailed Baseline Design

- The DBD is a detailed description of a detector design concept, with examples of performance for selected ILC physics processes.
- The DBD is not at the level of a TDR
 - only limited engineering effort was available.
- It includes a large R&D effort, but this is not yet complete.
- Baseline choices have been made for all subsystems except the vertex detector; options are also included.
- We provide a full cost evaluation for the detector.

The SiD DBD Detector

The SiD DBD Detector

The SiD DBD Detector - parameters

SiD BARREL	Technology	Inner radius	Outer radius	z max	
Vertex detector	Silicon pixels	1.4	6.0	± 6.25	
Tracker	Silicon strips	21.7	122.1	\pm 152.2	
ECAL	Silicon pixels-W	126.5	140.9	\pm 176.5	
HCAL	RPC-steel	141.7	249.3	\pm 301.8	
Solenoid	5 Tesla	259.1	339.2	\pm 298.3	
Flux return	Scintillator/steel	340.2	604.2	\pm 303.3	
SiD ENDCAP	Technology	Inner z	Outer z	Outer radius	
Vertex detector	Silicon pixels	7.3	83.4	16.6	
Tracker	Silicon strips	77.0	164.3	125.5	
ECAL	Silicon pixel-W	165.7	180.0	125.0	
HCAL	RPC-steel	180.5	302.8	140.2	
Flux return	Scintillator/steel	303.3	567.3	604.2	
LumiCal	Silicon-W	155.7	170.0	20.0	
BeamCal	Semiconductor-W	277.5	300.7	13.5	

Vertex Detector

Requirements

- < 5 μ m hit resolution
- ~ 0.1 % X₀ per layer
- $< 130 \,\mu W/mm^2$
- Single bunch timing resolution
- ILC bunch timing and low radiation environment allows very light, low power vertex system
- Pulsed power/DC-DC conversion
- Forced dry air cooling

Vertex Detector

No preferred technology – many choices/still an evolving picture Example 3-D/active edge design:

Vertex Detector – R&D

VIP

- VIP2a (3-tier MIT-LL chip) is produced and tested
- Both analog and digital sections work well, solving problems found in VIP1
- VIP2b (2-Tier Tezzaron/Global foundries) is in process.
- Initial tests of 2D test devices shows good analog performance. noise = 8e + 0.5 e/fF
- Sensors for 3D integration of VIP2b produced and tested.

Chronopixel

- •Measured noise of 24 e, specification is 25 e.
- Sensitivity measured to be $35.7\mu\text{V/e}$, exceeding design spec of $10\mu\text{V/e}$.
- Comparator accuracy 3 times worse then spec, need to improve this in prototype 2.
- Sensors leakage currents (1.8·10-
- ⁸A/cm²) is not a problem.
- Readout time satisfactory
- •Prototype 2 late 2011, 65nm TSMC

Next: Full sized ladder for barrel, wedge segment for disks, support structures, cooling. power pulsing, cabling.

ILC Physics requires:

- excellent momentum resolution over wide P_T range
- high point precision, mechanical stability for high P_T
- low material budget for low P_T
- high efficiency for all momenta/angles

-> Performance goals

Parameter	Design Goal		
coverage	hermetic above $ heta \sim 10^\circ$		
momentum resolution $\delta(1/p_{\mathrm{T}})$	$\sim 2-5 imes 10^{-5}/GeV/c$		
material budget	$\sim 0.10 - 0.15 X_0$ in central region		
	$\sim 0.20 - 0.25 X_0$ in endcap region		
hit efficiency	> 99%		
background tolerance	Full efficiency at $10 \times$ expected occupancy		

12/14/2012

Design features:

- Single-sided silicon micro-strips, double metal layer
- KPiX readout, with time stamping
- Gas cooling
- DC-DC converters supply high instantaneous current

Performance - efficiency

Single muons

Di-jet Z' $(M = 1 \text{ Tev/c}^2)$

Performance

Momentum resolution

Impact parameter

Tracker Alignment

SiD Alignment is based on:

- 1. Small number of robust, rigid elements
 - Minimize deviations
- 2. Precise positioning of smaller components during fabrication and assembly
 - Achieving ~ 20 μm (or better) precision
- 3. Real-time monitoring of alignment changes, including during push-pull moves
 - Using FSI, laser-tracks, and strain measurements using fibers
 - Building on ATLAS, CMS and AMS experiences
- 4. Track-based alignment for final precision
 - For each data-taking period
 - Overall accuracy ~ 3 μm (Tracker) / ~ 1 μm (Vertex)

Calorimetry

SiD Calorimetry is designed for the PFA approach:

- > ECAL and HCAL must be "imaging": high granularity
- ➤ Small Moliere radius for ECAL separate e⁻/charged h
- Minimize gap between tracker and ECAL
- > Sufficient overall depth

SiD ECAL

- Tungsten absorber
- 20+10 layers
- $-20 \times 0.64 + 10 \times 1.30 X_{0}$
- Baseline Readout using
 - 5x5 mm² silicon pads

SiD HCAL

- Steel Absorber
- 40 layers
- $-4.5 \lambda_i$
- Baseline readout
 - 1x1 cm² RPCs

All other options (except a scintillator ECAL) are being considered

Electromagnetic Calorimetry

Electromagnetic Calorimetry

Baseline 13 mm^2 pixel size 1.25 mm readout gap (incl. 0.32 mm thick Si sensors) effective Molière radius 14 mm pixels per silicon sensor 1024 channels per KPiX chip 1024 ~ 0.1 to 2500 MIPs dynamic range requirement heat load requirement 20 mW per sensor

Option: Monolithic Active Pixels (MAPS) 50μm x 50μm pixels

Steel absorber 40-layers, 4.5 λ_l Tracking calorimeter RPC Baseline. 1x1 cm² cells

Baseline: RPC DHCAL

Default "two-glass" RPC

- 2-glass design can operate at good efficiency and low multiplicity
- 1-glass design has flat multiplicity vs. efficiency still being understood/under development)

Baseline: RPC DHCAL

Test beam with 1 m³ stack Largest Calorimeter by channel count

8 GeV pion shower

120 GeV proton shower.

Baseline: RPC DHCAL

- The RPC technology is a great candidate for the readout of a highly segmented calorimeter.
- The dark rate in the DHCAL is very low
- The response is linear up to about 30 GeV/c.

Options: GEM, Micromegas, Scintillator

Scintillator

GEM

Muon System

- Muon identification/hadron rejection
- Flux return
- Tail catcher for calorimeter system
- Low rates/large area

Muon System

Major change of baseline vs. LOI:

Scintillating strips/wavelength shifting fibers

(RPC remains as an option)

Development of system to position SiPM at the end of a fiber

Magnet System

- 5 T design based on 4 T CMS solenoid
- Muon system flux return
 - ANSYS 2-D and 3-D models used in design work
 - Benefitted from cryo engineering at SLAC and BNL and advances in computation

Electronics and DAQ - Rates

SiD Electronics and DAQ built around KPiX approach
 →Maximize common components

	cell size nm²)	number of channels (10 ⁶)	av. to max. occ. (%)	approx. # bits per hit (bit)	data volume (Mbyte)
VTX barrel	$\times 0.02$	408	50 - 60	32	1600
VTX disks inner	0.02×0.02	295	4 - 70	32	100
VTX disks outer	0.05×10	980	0.5 - 20	32	40
TRACKER barrel	0.05×100	16	12 - 300	32	20
TRACKER disks	0.05×100		4 - 500	32	4
ECAL barrel	3.5×3.5	7%		40	
ECAL endcap	3.5×3.5	22	O)/2-	40	
HCAL barrel	10×10	30	S. S.	40	
HCAL endcap	10×10	5		40	
LumiCal	2.5×var.	0.061	- 6		
BeamCal	$2.5(5.0) \times \text{var.}$	0.076		40	
MUON barrel	41×var.	0.026	-	32	
MUON endcap	41×var.	0.022	-	32	

Detector Integration and MDI

3 m thick concrete push-pull platform:

- 30 m travel for detector swap
- ~1 mm max static deflection at detector support points

IR Hall configuration (vertical access)

Detector Assembly - examples

——Assembling the Hadron Calorimeter

Horizontal access – moving the _____solenoid

Beampipe/Forward Region

Beampipe/Forward Region

LumiCal - integrated luminosity and luminosity spectrum

BeamCal – small angle coverage (with LumiCal), instantaneous luminosity

Dedicated ASIC (Bean chip) for high luminosity region

THE BEAN V1.0

CSA

SiD Costs

- Costing is based on SiD Parametric Model
- Basic items have agreed cost (SiD, ILD and CLIC):

	agreed unit cost (US-\$)	agreed error margin (US-\$)
Tungsten for HCAL	105/kg	45/kg
Tungsten for ECAL	180/kg	75/ kg
Steel for Yoke	1000/t	300/t
Stainless Steel for HCAL	4500/t	1000/t
Silicon Detector	$6 / \text{cm}^2$	$2 / \text{cm}^2$

- Costs in 2008 U.S. \$

M&S 315 \$M Contingency 127 \$M Labor 748 \$M

 Model allows exploration of sensitivity to cost increase and detector parameter changes

SiD Costs

SiD M&S

SiD Costs

Note: For the LOI an optimal cost region was found near the baseline parameters:

 $R_{tracker}$ = 1.25 m, B = 5 T, HCAL λ_{l} = 4.5 Cost of Tungsten HCAL has been evaluated (requested by IDAG) No potential savings

SiD Production Status

- 3000 CPU days and 79000 Jobs
- 89 % Efficiency (Jobs successful)

SiD DBD Summary and Beyond

- We have presented a detailed design for a detector capable of high precision physics studies and discoveries at the ILC.
- Our technology choices are based on the currently available R&D results from SiD, CALICE, FCAL and other sources.
- We will continue to study/develop the SiD concept and pursue additional physics studies.
- As the ILC moves towards realization, we will expand SiD globally and work energetically with the new Linear Collider Organization to promote the ILC project

SiD研究グループは、日本でDBDを紹介する機会を与えてもらえましたことを大変光栄に思います。

SiD Workshop SLAC, January 16-18, 2013

This will be a critical meeting as we move forward from the DBD towards the next phase of the realization of the ILC and the SiD detector concept

Extra slides

SiD Design Study Organization

SiD Elements, Masses and Sizes

Name	Mass (10 ³ kg)	# Subcomponents	Mass (10 ³ kg)	Size (m×m)
Barrel	4220			
ECAL	60	12	5.0	2.8×3.5
HCAL	367	12	31.7	5×5.9
Tracker	3	1	3	2.5×3.3
Coil	180	2	90	6.8×5.9
Magnet Yoke	3360	8	420	12×5.9
Yoke Arch Supports	150	2	75	12×1
Peripherals	40			
Each of Two Endcaps	2450			
ECAL	10	1	10	0.15×2.5
HCAL	23	1	23	1.2×2.8
Muon System	30			2.6×12
MDI Components	10			
Endcap Steel Plates	2200	11	200	0.2×12
Endcap Leg Supports	140	2	70	2.6×6
Infrastructure	37			

SiD Push-Pull detector exchange

Muon System

Barrel - two orthogonal planes of strips

Endcaps – modules slide between spacers/steel layers

Electronics and DAQ

Versions of KPiX will be used for all subsystems except VTX and the high occupancy forward regions.