ILC DBD Common simulation and software tools

Akiya Miyamoto KEK

ILC PAC 14 December 2012 at KEK

Introduction

- Software tools for ILC have been developed by ILD and SiD independently but with good communication
- For DBD studies,
 - ◆ IDAG has requested us to study benchmark processes based on common generator samples
 - Common generator samples
 - Some software tools
 - Common work are desirable for saving resources and better tools
 - Common software tools

Common generator samples

- LOI era: by Whizard 1.40, generated at SLAC, shared by 4 concept groups through FTP
- Improvements for DBD
 - Whizard 1.95 with new features such as
 - full CKM matrix, complete τ polarization treatment, stores more information in generated files.
 - Physsim for tth & 8 f background processes
 - Sample generations at SLAC, DESY, KEK and common files are placed on ILC VO GRID.
 - ◆ Common format for generator meta info. (process ID, names, cross sections, file names, ...) and kept on webs.
 - Beam-beam effects: based on sets of TDR parameters 1TeV_B1b_ws, 500GeV_TDR_ws (nominal Lumi.)

Whizard 1.95 generator

- Tree calculation of $2 \rightarrow n$ processes with multiple ISR γ 's. Hadronization and decay of final n particles by Pythia. Tauola for τ .
- All (e⁺e⁻, e⁺γ, γe⁻, γγ) → n processes (n=2~6 particles) and e⁺e⁻ → f f̄ h e[±]: Luminosity spectrum by GuineaPig γ: nearly real Weizsacker-Williams photons (Whizard) or beamstrahlung photons (GuineaPig).
- ISR: Whizard default (order 3 LLA., include Pt of remnants)
- FSR by Pythia : QED for μ and τ , QCD&QED for quarks. No QED FSR of e (:: Can not give correct q^2 to Pythia.)
- Higgs: f̄fh process m_H=125GeV.
 h decays by Pythia with BRs given by a LHC WG.
 Other processes m_H=2TeV
- Amplitude with a gluon propagator in Whizard : OFF.
 - → Pythia simulate gluon splitting.
 - → No interferences between QCD and EW amplitude. ≤ 10% effect

Physsim generator for $t\bar{t}h$

- It was hard to generate processes with 8 fermions or more by Whizard, because too many CPU time and memory requirements due to many channels involved.
- Physsim calculates only a limited number of diagrams. Saves CPU time.

Figure 2.2.1: Feynman diagrams for the $e^+e^- \to t\bar{t}h$ process.

- Used for generating $e^+e^- \to t\overline{t}h$, $t\overline{t}Z(Z \to f\overline{f})$, $t\overline{t}g^*(g^* \to b\overline{b})$
- $lacksquare Z o q \overline{q}$ and $g^* o b \overline{b}$ in $t \overline{t} Z$ and $t \overline{t} g^*$ hadronize independently w. $t \overline{t}$
- $e^+(e^-)$ luminosity spectrum, ISR, hadronization/decay : same as Whizard samples.

Hadronization tuning

- Hadronization parameters for the LOI: Pythia default. LEP data suggest Pythia default parameters over-estimates neutral and long-lived hadrons
 - → direct impact on jet energy resolution, because neutral hadron energy is the component measured with least precision.

Parameters for DBD

Table 2.2.1: Predicted average numbers of various particle species in e^+e^- collisions at 92 GeV, for default Pythia settings or OPAL settings compared to LEP data

	Standard tune	OPAL tune	LEP combined data
All charged	20.6246	20.5685	20.9400 ± 0.1900
π^0	9.6814	9.8866	9.3800 ± 0.4500
π	17.1178	17.5467	17.0500 ± 0.4300
K	2.2879	2.1108	2.3600 ± 0.1100
p	1.2190	0.9110	0.9750 ± 0.0870
n	1.1661	0.8664	-
K_S^0	1.1168	1.0150	1.0040 ± 0.0150
K_L^0	1.1057	1.0164	-

LEP data indicates less neutral hadrons than Pythia default

Summary of generated samples

event-type	process
1f	$e^{\pm}\gamma \to \gamma e$
2f	$e^+e^- \to f\bar{f}$
3f	$e^{\pm}\gamma \to (e \text{ or } \nu) + 2f$
4f	$e^+e^- \to 4f$
5f	$e^{\pm}\gamma \to (e \text{ or } \nu) + 4f$
6f	$e^+e^- \to 6f$
aa_2f	$\gamma\gamma \to 2f$
aa_4f	$\gamma\gamma \to 4f$
aa_minijet	$\gamma\gamma \to \text{hadron mini-jets}$
aa_lowpt	$\gamma\gamma \to \text{lowpt hadrons}$
eepairs	beam induced low $p_t e^{\pm}$ pairs
higgs	$e^+e^- \to f\bar{f}h$
$\mathrm{tt} h$	$e^+e^- \to t\bar{t}h, t\bar{t}Z, \text{ and } t\bar{t}g^*(g^* \to b\bar{b})$

Whizard
e[±] polarizarion=±100%
γ source:
Weizsacker Williams/
Beam-strahlung

Pythia in Whizard (γ_{point})
Peskin & Pythia (gluon in γ)
GuineaPig (for Overlay)
Whizard (Mh=125 GeV)
Physsim

- ✓ Samples are grouped by "aliasing" and "process grouping": 1675 proc./~20k files
- $\sqrt{m_a}=0$, $m_{ii}>10$ GeV
- ✓ No Lorentz boost for crossing angle. No smearing of IP position

Common Sim./Rec. tools: LCIO

- Both ILD and SiD have developed their software tools based on LCIO.
- LCIO provides
 - ◆ Common event data model.
 - Common file format
- Development has started since 2003.
- New developments since LOI
 - ♦ LCIO: $1.x \rightarrow 2.x$
 - Random access to records (crucial for BKG overlay)
 - Extends Track class to hold
 - Multiple track states at IP, at First/LastHits, at Calorimeter
 - 1D Tracker hits for correct treatment of Si-Strip detectors
 - **♦** Support ROOT
 - etc.

Common Tools: PFA and LCFIPlus

- Particle Flow Algorithm (PFA)
 - ◆ A key package for excellent jet measurements. PandoraPFA was successfully used for LOI study in ILD framework
 - For DBD
 - Re-coded as a standalone library with essentially no external dependencies. → adaptation to each concept is easy.
 - Improved performance

LCFIPlus

- Heavy quark tagging is crucial for ILC physics
- ◆ In LOI, LCFIVertex : Originally developed for SLD Z physics (optimized for 2-jet events. Flavour tagging after jet clustering)
- ◆ For DBD, LCFIPlus
 - Aimed for multi-jet environments :
 Vertexing → Jet Clustering → Tagging
 - TMVA based flavor tagging: allows analysis dep. tagging condition

Summary

- Event samples and software tools for DBD have been prepared with common efforts between SiD and ILD
- New issues appears during DBD exercise
 Common software group has started to discuss issues post DBD era.