

Polarized positrons at low energies: Physics goal and source requirements

Sabine Riemann, DESY Zeuthen

Outline:

- ILC
 - as Higgs factory
 - At the top-quark threshold
 - at E ≥ 500 GeV
- GigaZ
- Spin flipper
- Summary

Many thanks to all contributors to studies on (e+) polarization!

Physics goal of future colliders

- Precision measurements
 - Higgs measurements
 - $ee \rightarrow tt$

ΪĻ

- Fermion pair production,
- $ee \rightarrow WW$
- Searches and measurements
 - SUSY
 - new gauge bosons,
 - extra dim,
 - Dark matter
 - ...
- More details see talk of M. Peskin, ILC TDR, CLIC CDR, ...
- Physics with pol e+ see: Moortgat-Pick et al. Phys.Rept. 460 (2008) 131

LCWS2013

S. Riemann

ilr iic

ILC as Higgs Factory

Higgs Strahlung

IIL

Higgs Mass and Higgs Coupling to the Z

Select events:

e+e- \rightarrow ZH and Z $\rightarrow \mu\mu$,ee

Fit to the spectrum of recoil mass of both leptons

Higgs mass and coupling

160

ILC RDR

⇔ <mark>σ_{zH} ~ g_{zH}²</mark> Model independent measurement!!

∆m < 100 MeV

Higher lumi improves precision

LCWS2013

Number of Events / 1.5 GeV

200

100

0 100

120

Recoil Mass [GeV]

140

ilr iit

Higgs Strahlung dominates

With e+ <u>and</u> e- polarization 'ineffective' processes are suppressed

ic

Higgs Strahlung

LC as Higgs factory

Higgs Strahlung

WW Fusion

Configuration	Scaling factors				
(P_{e^-}, P_{e^+})	$e^+e^- \to H \nu \bar{\nu}$	$e^+e^- \to HZ$			
(+80%, 0)	0.20	0.87			
(-80%, 0)	1.80	1.13			
(+80%, -60%)	0.08	1.26			
(-80%, +60%)	2.88	1.70			

- Enhancement of Higgs Strahlung by factor (1-Pe-Pe+)
- Enhancement of Higgs Production by WW Fusion

The Higgs @ LC

To establish the Higgs mechanism implies:

- Measurements of Higgs quantum numbers
 - Spin and parity determined at LHC
- Investigation of coupling mass relations
 - In SM, Higgs mass determines the couplings: linear coupling – mass relation
 - Deviations from linearity
 → non-SM Higgs Boson
- Model-independent measurement of Higgs coupling

LHC alone won't be able to provide a complete and comprehensive picture of the Higgs mechanism since precision is insufficient to discriminate between different models

LCV9592033

ILC as Higgs Factory (E_{cm} = 240 GeV)

- 10 Hz scheme (suggested in TDR) not necessary
 - See B. List, LC-REP-2013-018; Harrison, Walker, Ross, arXiv:1308.3726; Ushakov, LC-REP-2013-019
 - See Andriy's talk:
 - 5Hz Undulator based source is possible, Pe+ = 30%
- Spinning target wheel (see Friedrich's talk):
 - Rotation speed of ≤1000 rpm is sufficient
- Goal of physics measurements @ 240GeV
 - Higgs mass

ÌİĹ

- Higgs cross section
- Higgs coupling
 - To be improved with measurements at higher energies
- Expected benefit for P(e+) = 30%:
 - 24% more luminosity ⇔ coupling uncertainty reduced by ~11%
 - Improved background separation
- Polarization upgrade is not required as long as there is no new physics found at low energies
- At 240 GeV also other processes than Higgs production will be studied where e+ pol improves performance (ee→ff, WW)

Sensitivity to new physics ($E_{cm} \ge 240 \text{ GeV}$)

sensitivity to new physics expressed by 4 fermion contact $\frac{\eta_{ij} \cdot E_{cm}^2}{\Lambda^2}$ interaction

Ti

Scaling of sensitivity:

- $\Lambda \sim (L_{int})^{1/4} \sqrt{E_{cm}}$
- LEP (130GeV < $E_{cm} \le 208$ GeV) $L_{int} = 3 \text{ fb-1}$

e⁺;

e_i

- ILC @ 240 GeV:
 - L_{int} ≈ 200 fb-1
- sensitivity reach of Λ improves by factor 3 up to ~10-70TeV
- Further improvement by at least ~7% for 30% e+ pol

LEP: $e^+e^- \rightarrow l^+l^-$ LEP: $e^+e^- \rightarrow hadrons$ LL LL RR RR VV VV AA AA LR LR RL RL V0 V0 A0 A0 dd Du dd A1 A1 -20 -20 -10 -10 20 20 n 10 0 [TeV] [TeV]

i,j = L,R

e+ polarization improves substantially identification of models in case of deviations from SM

ilr iic

Top quark physics @ LC

- heaviest quark (as heavy as gold atom), pointlike
- Extremely unstable ($\tau \sim 4 \times 10^{-25}$ s)
 - Decay of top-quark before hadronization
 - Top-polarization gets preserved to decay (similar to τ -lepton)
 - ➔ The 'pure' top quark can be studied
 - Top mass and coupling are important for quantum effects affecting many observables
 - Top quark coupling as test of SM and physics beyond
- → top quark coupling, spin, spin correlations are observable by measuring polarization and LR asymmetries with high precision
 - Need high degree of polarization
 - e+ polarization highly desired (see i.e., Grote, Koerner, arXiv:1112.0908)
 - Need precise measurement of polarization

Precision Measurements with $P_{e+} > 0$

One key observable: Left-right polarization asymmetry

$$A_{LR} = \frac{\sigma_{LR} - \sigma_{RL}}{\sigma_{LR} + \sigma_{RL}} \left[\frac{1 - P_{e^-} P_{e^+}}{-P_{e^-} + P_{e^+}} \right] \cong \frac{N_{LR} - N_{RL}}{N_{LR} + N_{RL}} \cdot \frac{1}{2}$$

for measurements with equal luminosities for (- +) and (+ -) helicity

- Effective polarization
 - P_{eff} is larger than e- polarization

I/ F eff

- error propagation $\rightarrow \Delta P_{eff}$ is substantially smaller than the uncertainty of e- beam polarization, δP

P _e -	P _{e+}	0.6	0.34	0.22	
0.8		0.27 δP/P	0.50 δ Ρ/Ρ	0.64 δ Ρ/Ρ	
0.9		0.25 δ Ρ/Ρ	0.49 δ Ρ/Ρ	0.64 δ Ρ/Ρ	

• Higher effective luminosity

$$\mathbf{L}_{\rm eff} = \left(1 - \mathbf{P}_{\rm e^+} \mathbf{P}_{\rm e^-}\right)$$

→ Smaller statistical error

Photon collimator parameters for polarization upgrade

Parameter	Unit					L upgrade
Centre-of-mass energy	GeV	200-250	350	500	500	500
Drive-electron-beam energy	GeV	150	175	250	250	250
Undulator K value				0.92		
Undulator period	cm			1.15		
Positron polarisation	%	55	59	50	59	50
Collimator-iris radius	mm	2.0	1.4	1.0	0.7	1.0
Active undulator length	m	231	196	70	144	70
Photon beam power	kW	98.5	113.8	83	173	166
Power absorbed in collimator	kW	48.1	68.7	43.4	121	86.8
Power absorbed in collimator	%	48.8	60.4	52.3	70.1	52.3

60% e+ polarization at 350GeV ⇔ ~60% of photon beam power absorbed in collimator

 \rightarrow high load on the collimator materials

Spinning target: <2000 rpm (see Friedrich's talk)

ilr iic

E_{cm} =500GeV (and higher)

Full spectrum of physics processes
 Higgs production
 Top-quarks
 WW production

Fermion-pair production (indirect search for new physics) SUSY (if it exists)

LCWS2013

E_{cm} =500GeV (and higher)

Full spectrum of physics processes
 Higgs production
 Top-quarks
 WW production
 Fermion-pair production (indirect search for new physics)
 SUSY (if it exists)

Best flexibility with polarized e+ and polarized e- beam

 Physics with transversely polarized beams; only possible if both beams are polarized

Which degree of e+ polarization is required? – As much as 'possible'

Photon collimator parameters for polarization upgrade

Parameter	Unit					L upgrade
Centre-of-mass energy	GeV	200-250	350	500	500	500
Drive-electron-beam energy	GeV	150	175	250	250	250
Undulator K value				0.92		
Undulator period	cm			1.15		
Positron polarisation	%	55	59	50	59	50
Collimator-iris radius	mm	2.0	1.4	1.0	0.7	1.0
Active undulator length	m	231	196	70	144	70
Photon beam power	kW	98.5	113.8	83	173	166
Power absorbed in collimator	kW	48.1	68.7	43.4	121	86.8
Power absorbed in collimator	%	48.8	60.4	52.3	70.1	52.3

60% e+ polarization at 500GeV ⇔ collimator absorbs ~70% of photon beam power

 \rightarrow 50% e+ polarization should be 'sufficient'

Spinning wheel: <2000rpm (see Friedrich's talk)

IL

- Running again at the Z resonance (LEP, SLC)
- High statistics: 10⁹ Z decays/few months
- With polarized e+ and e- beams the left-right asymmetry A_{LR} and the effective polarization P_{eff} can be determined simultaneously with highest precision

GigaZ

- → relative precision of less than 5x10⁻⁵ can be achieved for the effective weak mixing angle, sin²θ_w^{eff}, 10x better than LEP/SLD
- Together with other LC precision measurements at higher energies (i.e. top-quark mass) theoretical predictions can be tested and physics models beyond the Standard Model distinguished

Blondel scheme

- Can perform 4 independent measurements (s-channel) $\sigma_{\pm\pm} = \frac{1}{4} \sigma_u \Big[1 + P_{e^+} P_{e^-} + A_{LR} \Big(\pm P_{e^+} \pm P_{e^-} \Big) \Big] \begin{bmatrix} =0 \text{ (SM) if both beams} \\ 100\% \text{ polarized} \end{bmatrix}$ $\sigma_{\pm\pm} = \frac{1}{4} \sigma_u \Big[1 - P_{e^+} P_{e^-} + A_{LR} \Big(\mp P_{e^+} \pm P_{e^-} \Big) \Big]$
- determination of P_{e+} and P_{e-} , σ_u and A_{LR} simultaneously $(A_{LR} \neq 0)$; for $P_e(+) = P_e(-)$:

$$P_{e^{\pm}} = \left[\frac{\left(\sigma_{_{+-}} + \sigma_{_{-+}} - \sigma_{_{++}} - \sigma_{_{--}}\right)}{\left(\sigma_{_{+-}} + \sigma_{_{-+}} + \sigma_{_{++}} + \sigma_{_{--}}\right)} \cdot \frac{\left(\mp \sigma_{_{+-}} \pm \sigma_{_{-+}} - \sigma_{_{++}} + \sigma_{_{--}}\right)}{\left(\mp \sigma_{_{+-}} \pm \sigma_{_{-+}} + \sigma_{_{++}} - \sigma_{_{--}}\right)}\right]^{\frac{1}{2}}$$

 → need polarimeters at IP for measuring polarization differences between + and – helicity states
 → Have to understand correlation between P_e(+) = P_e(-)

ilc

• •

Spin flipper

- Net polarization depends on direction of undulator windings
- Reversal of e+ helicity necessary
- It has to be synchronous with reversal of e- polarization to achieve
 - enhanced luminosity

IL

- Cancellation of time-dependent effects errors
- Helicity reversal requires spin flipper
 - near the DR where the spins have to be rotated

Spin flipper

IIL

LCWS2013

- beam is kicked into one of two identical parallel transport lines to rotate the spin
- Horizontal bends rotate the spin by 3 × 90° from the longitudinal to the transverse horizontal direction.
- In each of the two symmetric branches a 5m long solenoid with an integrated field of 26.2Tm aligns the spins parallel or anti-parallel to the B field in the damping ring.
- Both lines are merged using horizontal bends and matched to the PLTR lattice.
- The length of the splitter/flipper section section ~26m; horizontal offset of 0.54m for each branch

ilr

Weak interaction is parity violating
 Polarized beam(s) are mandatory for future precision physics at high energy e+e- colliders

Summary

- Positron polarization P(e+) ≥ 30% is useful for physics at all energies
 - Higher effective luminosity
 - Enhancement of interesting processes
 - new physics signals can be fixed and interpreted with substantially higher precision
 - For ee → tt measurements P(e+) ~60% are desired
 - High e+ polarization allows polarization measurement using annihilation data (⇔ cross check!)
- TDR: most physics prospects are derived assuming e+ polarization

Summary

Source requirements

IIL

- E_{cm} = 240 GeV is possible without 10Hz scheme
- 30% can be achieved without photon collimator
- 60% (50%) at E_{cm}=350GeV (500GeV) with γ collimator
- Target: spinning wheel to distribute heat load
 - See Friedrich's talk: rotation speed below 2000rpm is possible
 - Improved target design ⇔ resources required
 - Alternatives considered / to be considered:
 - W doped Li target (Target + Li lens in one device) does not improve (see Andriy's talk)
 - cooling options (radiative cooling?)
- FC seems workable but still need to demonstrate full average power operation
 - Run with 5Hz over extended period and full average power with cooling
- spin flipper
- 300Hz scheme vs. undulator based source: Both have (dis)advantages.

Substantially better physics potential with positron polarization

• Backup

Positron polarization in e+e- collisions

Consider unpolarized beam(s) in e+e- collisions:

s-channel processes

 \rightarrow only half of all possible processes yield $\sigma \neq 0$

Polarized e- beam in e+e- collisions

 Collisions of 100%-polarized e- beam and unpolarized positron beam:

\rightarrow still ½ of possible collisions yields $\sigma = 0$

Polarized e+ and e- beams

 Collisions of 100%-polarized e- beam and 100%polarized e+ beam:

- All collisions contribute to σ_{SM} \rightarrow effective luminosity is enhanced
- Physics beyond the Standard Model could show up if $\sigma_{sa} = 0$ is expected but $\sigma_{sa} \neq 0$ is measured

P < 100% ⇔ measured cross sections $\sigma_{s,t}$ are not zero Consider s-channel processes:

	e^-	e^+	Contibution to cross section		
$\sigma_{ m RR}$		◄⇐	$\frac{1{+}P_{e^-}}{2}{\cdot}\frac{1{+}P_{e^+}}{2}$	I O	
$\sigma_{ m LL}$			$\frac{1\!-\!P_{e^-}}{2}\!\cdot\!\frac{1\!-\!P_{e^+}}{2}$	$J_z = 0$	_
$\sigma_{ m RL}$		←⇒	$\frac{1+P_{e^-}}{2} \cdot \frac{1-P_{e^+}}{2}$	7 1	SM
$\sigma_{ m LR}$	→	← (= -	$\frac{1\!-\!P_{e^-}}{2}\!\cdot\!\frac{1\!+\!P_{e^+}}{2}$	$J_z = 1$	
mean	$s = \sigma (1)$		Λ D)	D	$P_{e-} - P_{e+}$
O _{ij}	$-0_0(1-1)$		$-A_{LR}r_{eff}$	$P_{\rm eff} =$	$\frac{1}{1 - P_{e} - P_{e}}$
	$\sigma_u = unpola$	rized cros	s section		

IL

u,t – channel processes

At all ILC energies

IIL

 helicities of initial and final state are directly coupled, but independent of the helicity of the second incoming beam particle

Single W production ⇔ vertex depends only on P(e+)

 \rightarrow enhancement / suppression of processes using P(e+)

$ee \rightarrow WW \quad (Ecm > 160 \text{ GeV})$

suppression of t-channel contribution (v exchange)

Suppression factors for t-channel contributions depending on e+ polarization

P _e -	P _{e+}	0	-0.6	-0.3	-0.22
0.8		0.2	0.08	0.14	0.16
0.9		0.1	0.04	0.07	0.08