Analysis of CALICE W-AHCAL Data at 10 - 100 GeV

Eva Sicking (CERN)

on behalf of the CALICE W-AHCAL group and the CLIC detector and physics study

November 13, 2013, LCWS 2013 – Tokyo

Content

- 3 Hadrons at $p_{\text{beam}} \leq 100 \text{ GeV}$
- 4 Outlook: Hadrons at $p_{\text{beam}} \leq 300 \text{ GeV}$
- 5 Summary & Outlook

Introduction

W-AHCAL Test Beam Experiments

- 2011 at CERN SPS
- $10 \le p_{\text{beam}} \le 300 \text{ GeV}$
- Dedicated e^{\pm} beam, mixed beam of μ^{\pm} , π^{\pm} , K^{\pm} , p
- W-AHCAL ($\sim 4\lambda_I$) + TCMT ($\sim 5.5\lambda_I$)
- Comparison to simulations: GEANT4 version 9.5.p01
- ightarrow CALICE analysis note on data up to 100 GeV ightarrow can-044
- ightarrow Ongoing analysis $p_{\mathsf{beam}} \leq$ 300 GeV

Electron Event Selection

- Use only dedicated e^{\pm} runs of high purity
- Further selection based on W-AHCAL information
 - One calorimeter cluster
 - No tracks
 - Number of hits within range

Electron Data

- Tungsten very dense absorber: $\sim 3 X_0$ per W-AHCAL layer
- Compact e^{\pm} showers
- Large impact of uncertainty of the SiPM saturation scaling factor (→ backup)

Electron Data

- Tungsten very dense absorber: $\sim 3 X_0$ per W-AHCAL layer
- Compact e^{\pm} showers
- Large impact of uncertainty of the SiPM saturation scaling factor (→ backup)

- Vary SiPM scaling factor for highest energy tile (±1 RMS)
- Saturaton scaling factor uncertainty significant at high energy densities in electromagnetic showers

Electron Data: Linearity

- e^{\pm} data at 15-40 GeV
- Describe energy sum using Novosibirsk fit with $\pm 1.5\sigma$ (Gaussian with tail)

Electron Data: Linearity

- e^{\pm} data at 15-40 GeV
- Describe energy sum using Novosibirsk fit with $\pm 1.5\sigma$ (Gaussian with tail)

- Visible energy increases with p_{beam}
- ullet Within uncertainties of \sim 4%, data and MC agree
- MC tends to show lower response

Electron Data: Energy Resolution

• Within systematic uncertainties, data and MC agree for energy resolution

• MC tends to show better energy resolution

Eva Sicking (CERN)

ALI(G

Hadron Event Selection

- Cherenkov threshold counter
 - π: 15-100 GeV (purity > 94%)
 - p: 15-100 GeV (purity > 85%)
 - K: 50,60 GeV (purity > 82%)
- Layer of the primary interaction in any of the first 3 calorimeter layers
 - Muon rejection
 - Aim to contain hadron showers in W-AHCAL ($\sim 4\lambda_I$) up to 100 GeV

• *E* and σ_E from Gaussian fit in the central region containing 80% of the statiscs

Hadrons at $p_{\text{beam}} \leq 100 \text{ GeV}$

Pion Data: Energy Sum

Good agreement between data and QGSP_BERT_HP and FTFP_BERT_HP

Hadrons at $p_{\text{heam}} \leq 100 \text{ GeV}$

Pion Data: Linearity and Resolution

- Leveling off of relative resolution at high p_{beam} indicates leakage effects
- MC tends to show better energy resolution

Eva Sicking (CERN)

Pion Data: Shower Profiles

- Longitudinal profile (here, from shower start): QGSP_BERT_HP best, overestimates energy deposition in first part of shower
- Radial profile: MCs overestimate energy density in shower core

Proton Data: Linearity and Resolution

- $\bullet\,$ Linear response and resolution as good as for π^\pm
- Data and BERT models agree well at all energies
- QGSP_BIC_HP underestimates data slightly (within uncertainties)
- MC tends to show better energy resolution

Kaon Data: Energy Sum

- Data and QGSP_BERT_HP and FTFP_BERT_HP agree well for K⁺
- QGSP_BIC_HP predicts too low energy

Hadrons at $p_{\text{heam}} \leq 100 \text{ GeV}$

Summary of Results at $p_{\mathsf{beam}} \leq 100 \, \mathsf{GeV}$

ullet Quantify compensation level: Residuals to linear fit of π^+ data

ullet Deviation better than $\pm 2\,\%$ for π^+ and protons, worse for e^+

Eva Sicking (CERN)

High Energy Hadron Showers: Tail Catcher (TCMT)

- Test beam experiments at CERN SPS using W-AHCAL+TCMT
- Purpose of TCMT
 - At SPS energies, hadronic shower can leak out of the W-AHCAL of $\sim 4\lambda_l$
 - $\bullet\,$ Catch tail of shower using additional $\sim 5.5 \lambda_I$ of tail catcher
 - $\bullet~$ Combination of W-AHCAL + TCMT \rightarrow improve energy resolution

• W-AHCAL: 38 tungsten layers, each 10 mm thick

- TCMT₁: 8 steel layers, each 20 mm thick
- TCMT₂: 8 steel layers, each 100 mm thick
- TCMT readout: scintillator strips and SiPM

High Energy Hadron Showers: Tail Catcher (TCMT)

- Example pion shower at $p_{\text{beam}} = 100 \text{ GeV}$
- TCMT recovers energy leaked out of W-AHCAL

- W-AHCAL: scintillator tiles
- TCMT: scintillator strips

• Ongoing study on how to combine W-AHCAL and TCMT energies

High Energy Data: Saturation Effects in W-AHCAL

- At low p_{beam} , hit energy reach in MC and data agree well
- At high p_{beam} , MC and data start to differ
 - \rightarrow MC reaches much higher energy depositions per cell
- Sign of saturation effect in data which is not accounted for in MC

High Energy Data: Saturation Effects in W-AHCAL

Data

- Linear extrapolation in reconstruction
- MC with default saturation
 - Linear extrapolation in digitization and reconstruction
- MC with more realistic saturation
 - Asymptotic extrapolation in digitization, linear extrapolation in reconstruction

 W-AHCAL hit energy distribution seen in data can be described well by MC when using more realistic saturation

Summary & Outlook

- Analysis of W-AHCAL test beam data at $10 \leq p_{\rm beam} \leq 100 \, {\rm GeV}$
 - W-AHCAL gives similar response for e^+ , π^+ , ${\cal K}^+$ and p
 - $\bullet\,$ Overall good agreement (percent level) between $\rm GEANT4$ and data
 - Confident in accuracy of simulations used for the CLIC CDR
- Analysis of W-AHCAL+TCMT test beam data up to $p_{\rm beam} \leq 300 \, {\rm GeV}$
 - Ongoing analysis
 - W-AHCAL leakage effects at high energy can be resolved using TCMT
 - Observation of saturation effects in W-AHCAL at high energies
 - Uncertainties in the high energy behaviour of the SiPM saturation curve become important

Comparison with $\operatorname{GEANT4}$ Simulations

- Comparison of test beam data with GEANT4 simulations (version 9.5.p01)
 - So far, version 9.5.p01 is used
 - Compatible results are obtained also with 9.6.2
 - Update of MC analysis results under way
- Test various physics models combined to so-called physics lists
- Three example physics lists

Scaling factor of the SiPM response curves

- Very dense showers in electro-magnetic data
- Uncertainties in scaling factor s have large impact on results
- Estimate systematic uncertainties: Find most energetic cell and re-run the reconstruction using $s' = s \pm 1$ RMS

Electron Data

- e⁻ has systematically higher response than e⁺
- Origin not yet understood
- Data taking at different times during 2011
- Detector was reinstalled between data taking periods of e⁻ and e⁺

Pion Data

• Variation of HCAL response in time

- Calorimeter response of protons stable in whole data taking period
- Response of π^- and π^+ varies with time
- Overall higher calorimeter response for π^- than for π^+
- Origin not yet understood
- Used full range of positive and negative data to estimate the systematic error due to detector stability

Systematic uncertainties

Particles	Measurement	Uncertainty	Total systematic uncertainty
40 GeV e ⁺	Total energy sum	$\begin{array}{l} \pm 2.0\% \mbox{ (MIP scaling factor)} \\ \pm 2.0\% \mbox{ (stability of detector response)} \\ + 3\%, -2.0\% \mbox{ (saturation scaling)} \end{array}$	+4.1%, -3.5%
	Energy sum per layer	$\pm 2.0\%$ (MIP scaling factor) $\pm 2.0\%$ (stability of detector response) +9%, -10% (saturation scaling)	+9.4%, -10.4%
Hadrons	Total energy sum	$\pm 2.0\%$ (MIP scaling factor) $\pm 3.1\%$ (stability of detector response) -0.5% (saturation scaling)	±3.7%

Table: Systematic uncertainties of the energy sum per calorimeter and per layer, which are considered in the analysis of the experimental data. For the e^+ data, only the 40 GeV case is indicated, as for this energy the systematic uncertainties are the highest. For the hadron data, the indicated uncertainties are valid for all analysed energies.

