Electronics for Highly Granular Scintillator Calorimeters.

Applications in the CALICE AHCAL and ScECAL

- > HCAL Base Unit (HBU) and Surface Mounted HBU
- > ECAL Base Unit (EBU)
- > Power Pulsing
- Data Acquisition System (DAQ)

Aliakbar Ebrahimi - DESY LCWS 2013 Tokyo, Nov 11-15 2013

CALICE Analog Hadron CALorimeter (AHCAL)

> A highly granular calorimeter for ILD

- Iron or Tungsten absorbers
- 3x3cm² plastic scintillator tiles
- Read out by individual Silicon PhotoMultipliers (SiPM)
- 8 millions channels, 50k PCB \rightarrow Readout fully integrated into the layers

HCAL Base Unit (HBU)

- > 144 detector channels
- > 4 SPIROC2b ASICs
 - Designed by OMEGA (France)
 - 36 channels per ASIC
 - 12 bit ADC and TDC
 - Auto trigger
 - Power pulsing (25 µW/channel)
- Integrated SiPM calibration system
 - 1 LED per channel
- Each layer has a Central Interface Board (CIB)
 - DAQ interface, Calibration board, Power board
- 5 HBUs in use, more to be equipped with tiles by the end of the year

Power Pulsing

- No active cooling inside absorber gaps
- Switch off the detector between bunch trains

- HBU Power pulsing tested successfully using LED calibration system
- T on time is longer than ASIC design expectation
- Too short Switch-on time \rightarrow Low gain and high noise

Power Pulsing: Full Extension Test

- Power pulsing tested in a full slab
 - 6 HBUs in a serial configuration
- > Additional block capacitors are needed to compensate voltage drop across 216cm
- With 6mF, ~2ms T_on gives excellent agreement between performance with and without power pulsing

Surface Mounted HBU (SM_HBU)

- Collaboration with Northern Illinois University
- Tiles with concave cavity to improve uniformity
- > One "megatile" per HBU
- SiPM is mounted on the PCB
- > Two SM_HBU are produced
- > Tested at NIU

ScECAL Base Unit (EBU)

- In collaboration with Universities of Shinshu, Kyushu and Tokyo
- ScECAL uses scintillator strips
- > HBU Architecture
- > Two different PCB designs needed
- > One orientation is produced and tested
- Second orientation in production

AHCAL Data Acquisition System (DAQ)

New multilayer DAQ based on the original CALICE DAQ concept

- Multithreaded software
- Global clock and control
- Data aggregator
- Multiple-DIF configuration
- Parallel readout
- Scalable
- > HDMI interface to detector layers
- Data will be transferred via HDMI once the LDA is ready

DAQ Design Concept

AHCAL DAQ Software

- > Based on LabView
 - Live monitoring
- Some tasks done using C++ libraries
- Multithreaded
- > Modular

CD Catum				
No Desires	ASIC Power Enable	CCC Connection	Polling	Unpacking
0 Handle SerialNo	- IN Sec. (D)	CCC Address Part fichcalccol1 3141	Poll Device	Method C++ Lib
	ON AND ST		Timenut	
Handle SerialNo 49167872		CCC Config Path	400	
B Config		1 ccc_confami		
Latency (ms)	VDDA/VDDD Power Enable	Go Orobe		
Set: 2	ON VDD Power Return			
Baud Rate Flow Control Purge Flags 9000 None - FT_PURGE_RX -	ON Set 70			
Rop Bits Parity Word Length				
HISTORENIST - HIPARITYNONE - HIBRISS -				
b Init Return	3.3V+Drivers Power Enable			
USB Open (all) USB Init (all) Reset DIF (all)	3.3V Power Return			
1 open init reset SerialNo	ON Set () (0 (0)			
	Off Ack 🥥 🗍 👅			

Clock and Control Card (CCC)

- New CCC design by university of Mainz
 - Compatible with CALICE DAQ
- > Based on Xilinx Zynq FPGA/SoC
 - Very flexible
 - Powerful on-board processing
 - There are two options
 - > ZedBoard
 - MarsBoard
- Ethernet connection to PC for Start/Stop/Readout
- In temporary setup while LDA is being developed
 - 8 layers can be controlled using an 1:8 HDMI fanout
- Parallel data path thorough HDMI is tested successfully

ZedBoard and Mezzanine

Link and Data Aggregator (LDA)

- New LDA design by university of Mainz
 - Compatible with CALICE DAQ
- > Based on Xilinx Zynq FPGA/SoC
 - ZedBoard or MarsBoard
- > There are two options
 - Mini-LDA: ZedBoard + Mezzanine → Generic
 - Wing LDA → AHCAL geometry specific
- Interfaces
 - I ethernet connection to PC
 - I HDMI connection to CCC
 - XX HDMI connection to DIFs

Mini-LDA and Mezzanine

Performance of the DAQ system

- Current version of the DAQ tested in different setups
 - Lab Setup, Cosmic Muon run, Test beams
- Fully synchronous operation of 5 layers
- Very stable operation
 - 72+ hours cosmic Muon run
- Faster than ever
 - ~9Hz readout frequency
 - ~150Hz sustained trigger rate
- Successfully tested in a two detector setup
 - 2xHBU + 2xEBU
- It could be used for the other calorimeters

Next Steps and Summary

Next steps

- > To test power pulsing with particle beam
- Incorporate LDA into DAQ system
- More HBUs to be equipped to enlarge the system

Summary

- Flexible electronics for scintillator calorimeters
 - Two versions of HBU for scintillator tile AHCAL with different SiPM mounting
 - Two versions of EBU for scintillator strip ECAL with different strip orientation
- > Power pulsing is being tested, so far successfully
- > DAQ system for scintillator calorimeters is being developed and tested
- Ready to integrate ScECAL in AHCAL test beams

Backup

Aliakbar Ebrahimi | Electronics for Highly Granular Scintillator Calorimeter | 2013-11-13 | Page 15

AHCAL Layer Cross-Section

> Tight space between absorbers

- 5.4 mm thick slits
- 3 mm is used by the plastic scintillators
- Extra thin PCB
- > ASICs are placed in cavities on PCB
- > 0.8 mm connectors are used

Full Extension Slab: 6xHBU in a row

- Signal transportation over 216 cm is challenging
 - Power, 40 MHz LVDS clock, LED trigger
- Single-Pixel Spectra measured on the last HBU
- First results prove suitability of the solution

Aliakbar Ebrahimi | Electronics for Highly Granular Scintillator Calorimeter | 2013-11-13 | Page 17

Voltage drop across a slab

Aliakbar Ebrahimi | Electronics for Highly Granular Scintillator Calorimeter | 2013-11-13 | Page 18

Gain Equalization

- > SPIROC2b allows preamplifier gain setting per channel
- Sain equalization works fine and improves single-pixel distance distribution of the channels

Memory cell dependence of pedestal

PFA

- International Large Detector(ILD)
 - The goal is to reconstruct energy of individual particles
- Particle Flow Approach(PFA)
 - Tracking detector → Charged Hadrons
 - EM calorimeter → Photons
 - Hadronic calorimeter → Neutral Hadrons
- > PFA Performance is sensitive to detailed structure of hadronic showers
 - HCAL should be able to distinguish between W and Z decays
- Requires excellent tracking and highlygranular calorimeters

Multilayer Synchronicity

- During July test beam we tested synchronicity
- For the same run, number of hits was checked in two different event builders
 - Accepting only the same bunch crossing IDs
 - Accepting bunch crossing IDs +/- 1
- > Absolutely no difference is observed

> We have a true synchronous detector

