Status of W-DHCAL Analysis: Data Quality and Calibration

Christian Grefe (CERN)

on behalf of the CALICE collaboration and the CLIC physics and detector study

14. November 2013 Linear Collider Workshop, Tokyo

Outline

Why Tungsten? W-DHCAL setup

1 Introduction

2 Data Quality

3 Calibration

Interpretended A Digitization (RPCSim)

Why Tungsten?

- Calorimeters have to be inside coil to avoid large dead areas
- Coil size limited by cost and feasibility
- Make optimal use of the available space
- Sampling calorimeter with reasonably small gap for active layer
 - Assume 5 mm plastic scintillator + 1.5 mm for readout
- Test various (simplified) calorimeter geometries
 - Absorber materials: steel, tungsten
 - Absorber thickness: 5–30 mm

Material	X_0 [cm]	$\lambda_{\rm I}~[{ m cm}]$
Steel	1.73	16.9
Tungsten	0.37	10.2

P. Speckmayer, C.G. - LCD-Note-2010-001

Why Tungsten? W-DHCAL setup

- Fit resolution to determine sampling and constant term $\sigma(E)/E = \frac{s}{\sqrt{E}} \oplus c$
- Steel has better intrinsic resolution
- Steel leakage dominated up to 1.5 m HCal depth
- For limited calorimeter depth ($\sim 1.2\,{\rm m})$ tungsten performs better
- Optimal sampling with tungsten absorber thickness around 10 mm
- Corresponds to a total depth of 7.5 $\lambda_{\rm I}$

Why Tungsten? W-DHCAL setup

Data Taking at CERN (2012)

- 54 RPC layers:
 39 with tungsten absorber (main stack),
 15 with steel absorber (tail catcher)
- Each layer instrumented with 96 \times 96 $1\times1\,{\rm cm^2}$ pads \Rightarrow \sim 500000 channels
- PS (1-10 GeV): 1 run period of 2 weeks
- SPS (10-300 GeV): 2 + 1 + 1 weeks
- Dedicated µ and high rate runs
- $\bullet\,$ In total \sim 30 million events recorded

Why Tungsten? W-DHCAL setup

Data Taking at CERN (2012)

- 39 layers W-DHCAL + 15 layers Fe-DHCAL
- $10\times 10\,{\rm cm^2}$ scintillator triggers (30 \times 30 ${\rm cm^2}$ for dedicated muon runs)
- Three wire chambers \Rightarrow beam profile
- Two Cerenkov counters \Rightarrow particle identification

Data Quality Issues Fraction of Cells Removed

1 Introduction

2 Data Quality

3 Calibration

④ Digitization (RPCSim)

Data Quality Issues Fraction of Cells Removed

Data Quality Issues

Data Quality Issues Fraction of Cells Removed

Data Quality Issues

All hits in detector layer 26/54 for run 6600488 (270 GeV and 14370 events)

- y [cell number] 90 80 10 70 60 50 40 30 20 10⁻¹ 10 20 30 50 60 70 80 90 10 40 x [cell number]
- Box events
- Dead RPC modules
- Dead and oversensitive chips
- Oversensitive cells
- Dead cells

Data Quality Issues Fraction of Cells Removed

Data Quality Issues

All hits in detector layer 22/54 for run 6600488 (270 GeV and 14370 events)

- Box events
- Dead RPC modules
- Dead and oversensitive chips
- Oversensitive cells
- Dead cells

Data Quality Issues Fraction of Cells Removed

Data Quality Issues

All hits in detector layer 22/54 for run 6600488 (270 GeV and 14370 events)

- Box events
- Dead RPC modules
- Dead and oversensitive chips
- Oversensitive cells
- Dead cells

Data Quality Issues Fraction of Cells Removed

Data Quality Issues

All hits in detector layer 22/54 for run 6600488 (270 GeV and 14370 events)

- Box events
- Dead RPC modules
- Dead and oversensitive chips
- Oversensitive cells
- Dead cells

Cleaning Procedure

- $\bullet~$ Ignore duplicate hits $\rightarrow~$ event based
- $\bullet\,$ Remove out of time hits: only accept -1900 ns to -1700 ns $\rightarrow\,$ event based
- \bullet Algorithm to identify dead and noisy regions by looking for large steps (loose) \rightarrow run based
- $\bullet\,$ Identify and reject box events by looking for patterns along module boundaries $\to\,$ event based
- $\bullet\,$ Re-run algorithm to identify dead and noisy regions (tight) \rightarrow run based

Fraction of Cells Removed

Fraction of Cells Removed

Introduction	Particle Identification	
Data Quality	Why Calibrate?	
Calibration	Efficiency and Multiplicity	
Digitization (RPCSim)	Calibration Procedure	

1 Introduction

2 Data Quality

Introduction Particle Identification Data Quality Why Calibrate? Calibration Efficiency and Multiplicity gitization (RPCSim) Calibration Procedure

Interaction Layer Definition

- Old definition: minimum of 3 hits in two consecutive layers
- New definition of interaction layer based on a three layer hit average
- Require increase of factor 2 and minimum average of 4
- Assume 3 hits in each "layer before stack" to allow identification in first layer

Christian Reichelt (Technical University of Denmark)

Introduction Particle Identification Data Quality Why Calibrate? Calibration Efficiency and Multiplicity igitization (RPCSim) Calibration Procedure

Interaction Layer Definition

- Verified in data and MC that the interaction layer follows exponential drop
- Extract interaction length from exponential fit
 - \Rightarrow matches expected interaction length from material budget

Christian Reichelt (Technical University of Denmark)

Introduction Particle Identification Data Quality Why Calibrate? Calibration Efficiency and Multiplicity igitization (RPCSim) Calibration Procedure

Why Calibrate?

- DHCAL only measures number of hits
- Multiplicity μ and efficiency ϵ depend on many factors
 - Temperature
 - Pressure
 - Voltage
 - ...
- Temperature stabilized by tent and AC

Introduction Particle Identification Data Quality Why Calibrate? Calibration Efficiency and Multiplicity igitization (RPCSim) Calibration Procedure

Why Calibrate?

- DHCAL only measures number of hits
- Multiplicity μ and efficiency ϵ depend on many factors
 - Temperature
 - Pressure
 - Voltage
 - . . .
- Temperature stabilized by tent and AC

Introduction Particle Identification Data Quality Why Calibrate? Calibration Efficiency and Multiplicity gitization (RPCSim) Calibration Procedure

Why Calibrate?

- DHCAL only measures number of hits
- Multiplicity μ and efficiency ϵ depend on many factors
 - Temperature
 - Pressure
 - Voltage
 - . . .
- Temperature stabilized by tent and AC

Determination of Efficiency and Multiplicity

- Lose pre-selection for muon events based on number of active layers (> 30) and total number of hits (< 150)
- $\bullet\,$ For each layer finds mip stub candidate in neighboring layers (±3 layers, min 4 valid clusters)
- Only use clusters with 3 or less hits
- Straight line fit to verify mip stub and identify intersection with layer of interest
- Determine if nearby cluster exists in layer of interest
- Efficiency ϵ : fraction of events with cluster found
- Multiplicity μ : mean cluster size for events with cluster found
- Ignore if intersection is a module border or has been identified as dead or noisy

Example Histogram

- Extract efficiency as $(N_{\text{total}} N_0)/N_{\text{total}}$
- Extract multiplicity as mean excluding bin 0
- Determined for each module in each layer

Calibration Procedure

• Correct each hit for its local efficiency and multiplicity to nominal values:

$$V_{\rm hits}^{\rm calibrated} = \alpha \sum_{i}^{N} \frac{\mu_0 \ \epsilon_0}{\mu_i \ \epsilon_i}$$

- μ_i and ϵ_i are determined for each module in each layer from muons within the run: works well only for central module
- Could use temperature and pressure dependence to correct for run conditions and use single calibration set \Rightarrow need to remove voltage dependence
- μ_0 and ϵ_0 are the nominal values, determined as average from all modules and layers in all dedicated muon runs

Introduction Particle Identification Data Quality Why Calibrate? Calibration Efficiency and Multiplicity Digitization (RPCSim) Calibration Procedure

Longitudinal Shower Profiles (20 GeV)

• Layer-to-layer fluctuations are effectively removed

- Runs taken at different time for same beam momentum can show large differences in response
- Remove run-to-run fluctuations by applying calibration

- Runs taken at different time for same beam momentum can show large differences in response
- Remove run-to-run fluctuations by applying calibration

• Calculate average χ^2/NDF (comparing each bin) between the first run and all other runs to estimate impact of calibration

• Calculate average χ^2/NDF (comparing each bin) between the first run and all other runs to estimate impact of calibration

Total Number of Hits (Electrons)

Total Number of Hits (Pions)

CALIC

Charge Generation Charge Distribution

1 Introduction

2 Data Quality

3 Calibration

RPCSim Overview

- Re-implementation of RPCSim as a Marlin processor
- Start from SimCalorimeterHits generated by GEANT4: range cut of $5\,\mu m$, store all energy deposits ($\gg 1$ per hit)
- Sort all hits by their layer and treat each layer individually
 - Collect all energy deposits of all SimCalorimeterHits
 - Apply distance cut (d_{cut}) : double loop over all combinations of deposits \Rightarrow remove second deposit if the distance is below d_{cut} (removed from loop)
 - Randomly generate total charge for each remaining deposit (according to data from RPC with analog readout)
 - Distribute charge around deposit position according to charge spread model and add to corresponding pad
 - Create a CalorimeterHit for each pad with charge above threshold
 - Create relation between each digitized hit and all contributing SimCalorimeterHits
- Store CalorimeterHit and LCRelation collection

Charge Generation Charge Distribution

RPCSim Charge Generation

- Charge generation parametrized from data taken with analog RPC
- Total charge generated should correlate with distance of energy deposit from anode plane
- Instead the charge is randomly generated from distribution
- On average this also models the varying charge *z*-position
- Only correct for MIP-like deposits traversing the gas perpendicular to gap

Charge Generation Charge Distribution

RPCSim Charge Distribution

- Charge distributed according to charge spread model: RPCSim3: $f(r) = Re^{-r/S_1} + (1-R)e^{-r/S_2}$ Total charge: $Q = \int_0^{2\pi} \int_0^{r_{max}} \left(Re^{-r/S_1} + (1-R)e^{-r/S_2}\right) d\phi dr$
- Need to determine charge integral for each individual pad (Cartesian coordinates)
- No analytical solution
 ⇒ use Monte Carlo integration
- Calculate N (10k–100k) charge fractions for random positions in r_{max} and add to corresponding pad
- Calculated for each charge deposit
 ⇒ very slow!

Charge Generation Charge Distribution

RPCSim Charge Distribution

- Charge distributed according to charge spread model: RPCSim3: $f(r) = Re^{-r/S_1} + (1-R)e^{-r/S_2}$ Total charge: $Q = \int_0^{2\pi} \int_0^{r_{max}} \left(Re^{-r/S_1} + (1-R)e^{-r/S_2}\right) d\phi dr$
- Need to determine charge integral for each individual pad (Cartesian coordinates)
- No analytical solution
 ⇒ use Monte Carlo integration
- Calculate N (10k–100k) charge fractions for random positions in r_{max} and add to corresponding pad
- Calculated for each charge deposit
 ⇒ very slow!

Charge Generation Charge Distribution

RPCSim Charge Distribution

- Do the Monte-Carlo integration once
 ⇒ allows much higher values for N
- Stores normalized charge integral for a grid of possible relative cell positions $(\vec{p}_{pad} \vec{p}_{deposit})$
- Take into account symmetry: store only one quadrant of relative positions $(0 \le x \le r_{max} + 0.5 \text{ CellSize})$
- Using 2D histogram with *M* × *M* bins
 ⇒ look-up using bilinear interpolation for actual relative position
- Using M = 200 (225 µm steps)
- $\bullet\,$ Using look up for charge integrals gives a speed-up of more than a factor 10 From 0.16 s/event to 0.012 s/event
- Once parameters are fixed store histogram in ROOT file

Result

• Number of digitized hits in muon events

Simulation

Digitization

Summary and Outlook

- Procedures to clean data dead and noisy cells
 - \rightarrow some effects still need to be understood
- Hit multiplicity and efficiency depend on temperature, pressure and voltage
- Layer calibration to eliminate these fluctuations
 - \rightarrow needs further improvement to properly treat inefficient regions
- Re-implementation of RPCSim as Marlin processor
- Replaced Monte Carlo integration with look-up table \rightarrow improve time by more than factor 10

Next Steps

- Finalize Mokka model including beam line instrumentation
- Include beam profile and particle angles from wire chamber data in simulation
- $\bullet\,$ Tune digitization model with muon and electron data \to prediction for pions
- Add local density based calibration
 - \rightarrow need to treat MIPs different from showers
- Improve particle identification using Monte Carlo