

Recent DHCAL Developments

José Repond and Lei Xia Argonne National Laboratory

Linear Collider Workshop 2013 University of Tokyo November 11 – 15, 2013

The DHCAL

Description

54 active layers Resistive Plate Chambers with 1 x 1 cm² pads → ~500,000 readout channels Main stack and tail catcher (TCMT)

Electronic readout

1 – bit (digital) Digitization embedded into calorimeter

Tests at FNAL with Iron absorber in 2010 - 2011

Tests at CERN with Tungsten absorber 2012 в

Fall 2008 – Spring 2011

DHCAL Construction

Resistive Plate Chamber

Sprayed 700 glass sheets

Over 200 RPCs assembled

 \rightarrow Implemented gas and

HV connections

Electronic Readout System

10,000 ASICs produced (FNAL)
350 Front-end boards produced
→ glued to pad-boards
35 Data Collectors built
6 Timing and Trigger Modules built

Extensive testing at every step

Assembly of Cassettes

54 cassettes assembled Each with 3 RPCs and 9,216 readout channels

350,208 channel system in first test beam Event displays 10 minutes after closing enclosure

Testing in Beams

Fermilab MT6

October 2010 – November 2011 1 – 120 GeV Steel absorber (CALICE structure)

CERN PS

May 2012 1 – 10 GeV/c Tungsten absorber (structure provided by CERN)

CERN SPS

June, November 2012 10 – 300 GeV/c Tungsten absorber

RPCs flown to Geneva All survived transportation

A unique data sample

Test Beam	Muon events	Secondary beam	
Fermilab	9.4 M	14.3 M	
CERN	4.9 M	22.1 M	
TOTAL	14.3 M	36.4 M	

Recent developments

Improved Resistive Plate Chambers

1-glass design High-rate RPCs

High voltage distribution system

Gas recirculation system

1-glass RPCs

Offers many advantages

Pad multiplicity close to one \rightarrow easier to calibrate Better position resolution \rightarrow if smaller pads are desired Thinner \rightarrow t = t_{chamber} + t_{readout} = 2.4 + ~1.5 mm \rightarrow saves on cost Higher rate capability \rightarrow roughly a factor of 2

Status

Built several large chambers Tests with cosmic rays very successful

 \rightarrow chambers ran for months without problems Both efficiency and pad multiplicity look good

Rate capability of RPCs

Measurements of efficiency

With 120 GeV protons In Fermilab test beam

Rate limitation

NOT a dead time But a loss of efficiency

Theoretical curves

Excellent description of effect

Rate capability depends

Bulk resistivity R_{bulk} of resistive plate (Resistivity of resistive coat)

Not a problem for an HCAL at the ILC

B.Bilki et al., JINST 4 P06003(2009)

J. Repond - The DHCAL

C. Pecharromán X. Workshop on RPC and related Detectors (Darmstadt)

Available resistive plates

Where to use high-rate RPCs

ILC – Hadron calorimeter (close to beam pipe)

CLIC – Hadron calorimeter (forward direction – 2γ background)

CMS – Hadron calorimeter (forward direction)

Current forward calorimeters inadequate for high-luminosity running

PbWO₄ Crystals Scintillator/Brass + Quartz fibers/Steel

To start in year ~2023 Luminosity of 5 x 10³⁴ cm⁻² (> x10 higher than now)

High-rate Bakelite RPCs

Bakelite does not break like glass, is laminated **but** changes R_{bulk} depending on humidity **but** needs to be coated with linseed oil

Use of low R_{bulk} Bakelite with $R_{bulk} \sim 10^8 - 10^{10}$ and/or Bakelite with resistive layer close to gas gap

Several chambers built at ANL

High-rate Bakelite RPCs

Bakelite does not break like glass, is laminated **but** changes R_{bulk} depending on humidity **but** needs to be coated with linseed oil

Use of low R_{bulk} Bakelite with $R_{bulk} \sim 10^8 - 10^{10}$ and/or Bakelite with resistive layer close to gas gap

Several chambers built at ANL

Noise measurement: B01

(incorporated resistive layers)

Noise measurements

Applied additional insulation Rate 1 – 10 Hz/cm² (acceptable) Fishing lines clearly visible Some hot channels (probably on readout board) No hot regions

Cosmic ray tests

Stack including DHCAL chambers for tracking Efficiency, multiplicity measured as function of HV High multiplicity due to Bakelite thickness (2 mm)

GIF Setup at CERN

Trigger = (Scil or Sci2) and Sci3

Support

J.Repond: DHCAL

Tests carried out by University of Michigan, USTC, Academia Sinica

First results from GIF

Absolute efficiency not yet determined

Clear drop seen with source on

Background rates not corrected for efficiency drop

Irradiation levels still to be determined (calculated)

Development of semi-conductive glass

Co-operation with COE college (Iowa) and University of Iowa

World leaders in glass studies and development

Vanadium based glass

Resistivity tunable Procedure aimed at industrial manufacture (not expensive)

First samples

Very low resistivity $R_{bulk} \simeq 10^8 \Omega cm$

New glass plates

 $R_{bulk} \sim 10^{10} \Omega cm produced$ Plates still need to be polished Production still being optimized

High Voltage Distribution System

Generally

Any large scale imaging calorimeter will need to distribute power in a safe and cost-effective way

HV needs

RPCs need of the order of 6 - 7 kV

Specification of distribution system

Turn on/off individual channels Tune HV value within restricted range (few 100 V) Monitor voltage and current of each channel

Status

Iowa started development First test with RPCs encouraging Work stopped due to lack of funding

Gas Recycling System

DHCAL's preferred gas

Gas	Fraction [%]	Global warming potential (100 years, $CO_2 = 1$)	Fraction * GWP
Freon R134a	94.5	1430	1351
Isobutan	5.0	3	0.15
SF ₆	0.5	22,800	114

Recycling mandatory for larger RPC systems

Development of 'Zero Pressure Containment' System

Summary

After successful testing of the DHCAL at Fermi and CERN

Further improvements to the active medium and its supplies

Development of **1-glass RPCs** (design validated!) Development of low-resistivity bakelite/glass (ongoing, but encouraging) Development of a high-voltage distribution system (stalled) Development of a gas recirculation system (new concept, being assembled)

Backup

CMS forward calorimeter

Driven by successful application of PFAs to CMS analysis

Proposal to replace forward calorimeters with an IMAGING CALORIMETER

Several members of CALICE have been contacted by CMS

Formidable challenge

Charged particle flux

In calorimeter volume up to 50 MHz/cm² at shower maximum

Total dose

Fluences of 10¹⁶ neutrons

