Diamond sensor for beam halo monitoring & collimation

On-going work and plan for ATF2

Philip Bambade

Laboratoire de l'Accélérateur Linéaire Université Paris 11, Orsay, France

On behalf of and collaborating with:

LCWS13

Sha Bai (IHEP), Frédéric Bogard, Jean-Noël Cayla, Angeles Faus-Golfe (IFIC), Nuria Fuster Martinez (PhD, IFIC), Illia Khvastunov (M2 st., Kiev), Shan Liu (PhD), Javier Resta Lopez (IFIC),), Hugues Monard, Christophe Sylvia, Toshiaki Tauchi (KEK), Nobuhiro Terunuma (KEK), Sandry Wallon, Dou Wang (IHEP)

Tokyo, 11-15 November 2013

Topics

Beam halo ⇔ BSM background

- measurement
- collimation
- modeling halo formation and re-generation
- Diamond sensor to measure beam halo and tails
 - features of diamonds
 - beam testing at PHIL (low energy photo-injector beam at Orsay)
 - design of in-vacuum diamond scanner for ATF2 and PHIL

Introduction

Motivations:

➢ Beam halo transverse distribution unknown → investigate halo model & propagation
➢ Monitor beam halo to control backgrounds by means of collimation and tuning
○ Probe Compton receil electron > (neasible in future, bigher order contributions)

 \succ Probe Compton recoil electron \rightarrow (possibly, in future, higher order contributions)

Analytical and simulation modeling of ATF beam halo shape:

- beam gas scattering
- beam gas bremstrahlung
- intra-beam scattering

Dou Wang (IHEP)

Ex.: horizontal and vertical halo distribution from beam-gas scattering

Beam halo and BSM background issues

Halo

Considering system in simulation

Electrons density, a.u.

Comparision halo- and Compton electrons

7.5 σ_{xp} and $15\sigma_{yp}$

Comparision halo- and Compton electrons

7.5 σ_{xp} and $20\sigma_{yp}$

Comparision halo- and Compton electrons

Khvastunov Illia (khvastun@lal.in2p3.fr)

September 25, 2013 15 / 20

7.5 σ_{xp} and $30\sigma_{yp}$

Comparision halo- and Compton electrons

Present "collimator" used at ATF2 = tapered beam pipe between QD10BFF and QD10AFF

Beam size at QD10BFF:

 $σ_y$ = 328.85 um (in simulation) Beam pipe radius: R= 8mm Beam pipe should cut the beam at: R/ $σ_y$ ≈ ±24 σ

Post IP wire scanner (MPIP): 70 cm from IP Beam size at MPIP : $\sigma_s = 235.6$ um (in simulation) Measured beam size at MPIP: $\sigma_m = 308.9$ um (in measurement)

Factor for betatron mismatch: $k = \sigma_s / \sigma_m = 0.76$

> Predicted edge of cut at : 24 $\sigma \star k \approx \pm 18 \sigma$

Halo Distribution at Post-IP

Phase Difference

Effect of "Collimator" Movement on Beam Core

Effect of "Collimator" Movement on Beam Halo

Shan Liu (LAL)

Betatron halo collimation: Scan of possible locations

 Two possible locations for a possible betatron horizontal collimator and one location for a possible betatron vertical collimator with high beta function and no dispersion

Nuria Fuster Martinez (IFIC)

Results: Loss map comparison for Pos1 and Pos3 trfor a rectangular and horizontal halo collimator

- With the collimator at Pos1 we avoid losses at the FD with an aperture of 5 mm in the direction of collimation while if we put the collimator at Pos3 we still have losses at the FD
- The drift space at Pos1 is bigger
- Pos1 is farther than Pos3 from the IP

Nuria Fuster Martinez (IFIC)

Diamond Detector Features

Property Dia	mond	Silicon	
Density (g m ⁻³)	3	3.5	2.32
Band gap (eV)	5	5.5	1.1
Resistivity (Ω cm)	>	>10 ¹²	10 ⁵
Breakdown voltage (V cm ⁻¹)	-	107	10 ³
Electron mobility (cm ² V ⁻¹ s ⁻¹)	-	1700	1500
Hole mobility (cm ² V ⁻¹ s ⁻¹)	2	2100	500
Saturation velocity (µm ns ⁻¹)	-	141 (e ⁻)	100
	9	96 (hole)	
Dielectric constant	5	5.6	11.7
Neutron			
transmutation cross-section(mb) 3	3.2	80
Energy per e-h pair (eV)		13	3.6
Atomic number	6	6	14
Av.min.ionizing signal per 100 µm	n (e) 🛛 3	3600	8000

High voltage side readout

ADVANTAGES

- Large band-gap⇒low leakage current
- High breakdown field
- High mobility ⇒ fast charge collection
- Large thermal conductivity
- High binding energy ⇒ Radiation hardness
- Fast pulse ⇒ several ns

Need very large dynamic range

	Total #	Max. #/mm ² @ Sensor	Charge signal/mm ²
Beam	1010	6.16*10 ⁷	1.6887µC
Halo	10 ⁷	2.24*10 ⁴	61.376pC
Compton	28340	5.2*10 ²	1.4284pC

Low voltage side readout

- Single-Crystal Diamond Detector
- Substrate size: 4.5mm * 4.5mm * 0.5 mm
- Charge yield: 3fc/MIP¹

¹http://www.cividec.at/.

Diamond Detector Test @ PHIL

Shan Liu (LAL)

Test without external shielding box

R=2mm collimator

Shan Liu, Illia Khvastunov (LAL)

Signal on top of dark current

Shan Liu, Illia Khvastunov (LAL)

Signal pulse develops tail for increasing beam charge

16 pC \rightarrow 10⁸ electrons (~ 10 times less on diamond with 2mm collimator)

100 m ¼ heliax coax + 24 dB attenuator before scope Shan Liu, Illia Khvastunov (LAL)

Beam size measurement with older diamond sensor

Beam size mesurement using Diamond detector:

YAG screen measured beam size : 4.45 mm ; Diamond size : 4.5X4.5 mm $\sigma_x^2 = \sigma_m^2 - (4.5/v_{12})^2$, $\sigma_m = 4.757$ mm -> detector measured beam size $\sigma_x = 4.57$ mm Shan Liu (LAL)

CIVIDEC Amplifier

Parameters:

Туре:	Current amplifier
Analog bandwidth:	1 MHz – 2 GHz
Gain:	40 dB
Radiation hardness:	1 MGy
Input coupling:	AC coupled with 1.5 nF
Input impedance:	50 Ω
Input protection:	IEC61000-4-2 (±8 kV, 2 A for 1 µs)
Input polarity:	Bipolar
Output polarity:	Non-inverting, bipolar
Linear output voltage range:	±1 V
Output impedance:	50 Ω
RMS noise:	2.5 mV (3.5 dB)

Frequency Min.	0.01	(MHz)
Frequency Max.	1000	(MHz)
Gain Minimum	20	(dB)
Gain Flatness	0.75	(dB+/-)
Noise Figure	3.4	(dB)
Input VSWR	2:1	(Ratio)
Output VSWR	2:1	(Ratio)
Output P1dB	14	(dBm)
Voltage 1 Nom.	15	(V)
Current 1 Typ.	60	(mA)
Impedance	50	(Ohms)

MITEQ Amplifier

Energy decay for Sr-Y90: 0.546 MeV and 2.28 MeV

Shan Liu, Illia Khvastunov (LAL)

"Plug-compatible" design for ATF2 & PHIL

Frédéric Bogard (LAL)

Issues & Prospects

- ✓ Several tests of diamond detector done in air at PHIL → more tests are planned to finalize details of the electronics
- ✓ Observe long tail for large signals from PHIL beam → due to electronics or other physics effects ? Issue of linearity...
- ✓ Using amplifier or attenuator with 1-2 GHz bandwidth, CIVIDEC diamond sensor measures signal from 1 to 10⁸ electrons → S/N ratio of these measurements needs to be studied
- ✓ Two sets (diamond sensor + mechanics) will be ordered & prepared for application in vacuum → one for PHIL, another for ATF2. Plan test at PHIL early 2014 and install at ATF2 in June/July
- Proposal for horizontal & vertical moveable halo collimators being prepared with IFIC group
- Simulation (BDSIM, CMAD) and analytical work for halo modeling