

Summary RD7: Calorimetry/muons

Katja Krüger (DESY) LCWS13 Tokyo, 11.-15. November 2013

Calorimeters for a Linear Collider

Requirements:

- > jet energy resolution of 3-4% for 50-500 GeV jets
- > excellent γ/e identification
- > fit inside coil: compact, no cooling between absorbers
- > CLIC: timing resolution ~1 ns
- > forward calorimeters: radiation hardness, fast readout

Possible Solutions:

- particle flow
- > dual readout

Fiber pattern RD52

Calorimeters for Particle Flow Algorithms

Silicon-Tungsten ECAL for SiD

> Ambitious design

J. Brau

- Si sensors with 1024 pixels of 13 mm², bump-bonded to KPiX readout chip, readout via Kapton bus cables
- 1 mm readout gap \rightarrow 13 mm Moliere radius
- > first testbeam results
 - "monster" events: large negative amplitudes, out-of-time

Silicon-Tungsten ECAL for ILD

Analysis of Physics Prototype data

Tests of Engineering Prototype

- > operation of small prototype (up to 10 layers)
- power pulsing, also in magnetic field

Towards "ILD-sized" Engineering Prototype

> DAQ, mechanics, tooling, automation

R. Cornat

Robustness & Optimisation

> could allow for cost reductions

Y. Sudo

Scintillator-Tungsten ECAL & Hybrid ECAL for ILD

ScECAL Engineering Prototype: Testbeam

SSA on 2 layers

ScECAL Optimisation

K. Kotera, S. leki

Hybrid ECAL Studies

Analog HCAL

Analysis of Physics Prototype data

tungsten absorber (CLIC)

E. Sicking

Tests of Engineering Prototype

- > operation of small prototype
- > power pulsing

O. Hartbrich A. Ebrahimi

Towards "ILD-sized" Engineering Prototype

DAQ, automation, calibration, gain stabilisation 750 Gain 5 measurements J. Kvasnicka at given temp 700 G. Eigen 650 With compensation xed bias 33.4 V 600 slope: (-6.17 ± 0.07) x10³ Without Compensated by testboard compensation slope: (+15.4 ± 75.9) 550 10 20 30 40 Temp [Celsius] DES

SDHCAL

RPC: 1m³ Prototype Analysis

- energy resolution
- Hough Transform for finding tracks in hadronic showers

Micromegas: 4 layers (+ 46 layers RPC)

> data corrected to a virtual full Micromegas SDHCAL

Micromegas: Towards 1m³ Prototype

- > spark protection → resistive Micromegas
 M. Chefdeville
 - DESY

Digital HCAL

Analysis of Physics Prototype data

> detailed RPC simulation; calibration, non-linearity correction, software compensation

Further Developments

J. Repond

1-glass RPCs, high rate RPCs, HV distribution, gas recycling

DESY

Katja Krüger | LCWS13: Calo/Muon Summary | 15 November 2013 | Page 9/12

FCAL & Muon/Tailcatcher

FCAL Requirements:

- LumiCal: high precision, high occupancy
- > BeamCal: radiation hardness, fast readout

Testbeam; irradiation studies at SLAC

Muon/Tailcatcher Requirements:

- > large instrumented area
- tailcatcher technology will probably correspond to HCAL

Dual Readout: DREAM / RD52

Goal: understand fundamental limitations of hadron calorimetry (response function, linearity, resolution)

Idea for dual readout: fluctuations of EM fraction in hadron showers limit resolution \rightarrow measure EM and HAD fraction simultaneously

- Scintillator fibers: sensitive to EM and HAD fraction
- Cerenkov fibers: mainly sensitive to EM fraction
- e performance: no constant term, reasonably well described by GEANT4 simulation

> π performance: nice gaussian response

J. Hauptman

Summary

- performance of all PFA calorimeter technologies shown in large scale beam tests
 - nice physics results
 - knowledge about shower development in unprecedented detail
- several projects: first results from engineering prototypes addressing detector integration
 - scalability, power pulsing
 - automation, mass production
- started studies for detector optimisation in terms of cost

