Toward Higher Gradient and Q₀

Rong-Li Geng

Outline

- Why higher gradient and Q0 R&D
- Challenges faced
- Current activities
- Outlook

- Enable higher luminosity within cryogenic limit
- Enable reliable and repeatable cavity fabrication
- Preserve cavity gradient and Q0
 Operation performance

→ Cost

ILC Cavity Gradient R&D under GDE

- Reliable cavity processing clearly demonstrated
- Second-pass processing clearly defined

(b) Second-pass yield

The International Linear Collider Technical Design Report, ISBN 978-3-935702-77-5 (2013).

JLab 86 7-cell Low-loss shape 1.5GHz cavities Bulk BCP + "ILC style" final cavity processing: EP + bake

80 cavities installed in 10 cryomodules All modules now in CEBAF tunnel Operation with beam Jan 2014

Reschke, Presented at the 2nd LCC ILC Cavity Group Meeting, Nov. 6, 2013

What is next?

- Field emission
- Scatter in quench limit
- Ultimate gradient limit
- Q-drop
- HOM coupler limit
- Lorentz force detuning limit

[·•

- Near term goal: Reduce field emission reliably up to a surface electric field of 80 MV/m in 9-cell cavity so as to insure operation of cryomodules at average gradient of 31.5 MV/m with acceptable field emission induced cryogenic loss and field emission induced radiation dose
- (Cryogenic loss due to FE) / (Cryogenic loss due to dynamic + static heat) per cryomodule < 10%
- Dark current per cavity < 50 nA
- Long term goal: Push the field emission onset gradient reliably beyond Epk = 50 MV/m in 9-cell cavities; Demonstrate Epk = 100-120 MV/m in 9-cell cavities
- Requires deeper fundamental understanding of FE phenomenon
- Requires advanced surface processing

Locating Field Emitter in 9-cell Cavity

LCWS2013, U. of Tokyo Nov. 11-15, 2013, R.L. Geng

LINEAR COLLIDER COLLABOR Understand and reduce gradient scatter

Natural defect studies at DESY ILC HiGrade Lab

EBW parameter systematic optimization at KEK

EBW x-ray imaging for studies of Welding porosity at Kyoto University.

Welding porosity studies at JLab with controlled varied welding conditions.

Iwashita

Ultimate Gradient (Nb)

Recent cavity results established that a peak surface magnetic field of 190-200 mT is possible and practical

45 MV/m in TTF shape means effectively > 50 MV/m in Re-entrant, low-loss or ICHIRO, and Low-Surface-Field shape cavities

In fact, this is already shown in many 1-cell cavities

LCWS2013, U. of Tokyo

- Ratio of Hpk/Eacc solely determined by shape
- Lowering Hpk/Eacc for higher gradient up to critical RF magnetic field (material property)
- Three cavity shapes under evaluation
- Low-loss (KEK, JLab, IHEP)
- Re-entrant (Cornell)
- Low-Surface-Field (JLab/SLAC)

New Cavities of Improved Shapes

LSF shape prototype at JLab

JLab Ichiro shape 2 each under testing

- Nb, 240 mT predicted by superheating theory
 - Ultimate gradient 60 MV/m
 - ~210 mT (~90% theoretical limit) achieved
 - One 1-cell 1.3 GHz re-entrant cavity (R.L. Geng et al., PAC2007)
 - One 2-cell 1.3 GHz cavity (K. Watanabe et al., KEK cERL, 2012)
 - 195 mT (~80% theoretical limit) achieved
 - One 9-cell 1.3 GHz TTF-shape large grain cavity (D. Reschke et al., SRF2011)
- Nb3Sn, 400 mT predicted by superheating theory
 - Ultimate gradient 100 MV/m
 - Vapor diffusion
 - Was investigated 20 years ago
 - New efforts restarted at Cornell
 - » New test result of 1-cell cavity show new progress (next slides)

- Theory by Gurevich, APL 88, 012511(2006)
- Potential for magnetic limit 500-1000 mT
- Ultimate gradient up to 200 MV/m
- Insulating layer nm thick
- Thin film coated cavities
- Coating techniques
 - Several paths being explored at ANL (ALD), CERN (sputtering, HIPIMS), JLAB (ECR, CVD), LBNL (HIPIMS)
- Requires RF evaluation of samples at low temperature
 - Several apparatus being developed at CERN (Quadrupole resonator), Cornell (TE cavity), JLAB (SIC cavity)

Higher-T_cSC: NbN, Nb₃Sn, etc Nb

LCWS2013, U. of Tokyo

Q-drop

- Many compelling questions remain toward higher gradient and Q0.
- ILC continues to drive SRF frontier R&D and generate benefits to other SRF projects.
- Key infrastructures already in place at many lab due to GDE led effort – time to fully profit from these investments.
- Close collaboration in is key. This was very true in GDE era and more critical in LCC era due to resource limit.