

Higgs production in ZZ fusion at 1.4TeV

Aidan Robson

(on behalf of the CLIC Detector and Physics Study) LCWS13 11–15 Nov 2013 Tokyo

Introduction

Fusion process e⁺e⁻ → e⁺e⁻H
Cross-section at 1.4TeV ~ 24.5fb
10% of leading production process
e⁺e⁻ → vvH
but access to HZZ vertex

 Using CLIC-ILD detector, good forward coverage – important here

Summary

- Signal characteristics
- Analysis strategy
- Preselection
- Backgrounds
- Extracting the signal

Characterising the signal

Plots all normalised to 1.5 ab⁻¹

800

600

Analysis strategy

Kinematic preselection

Kinematic preselection

Monte Carlo generated using WHIZARD 1.95

e	eH signal	survivina	xs/fb				
All events			24.47				
\geq 2 electron cands, E	>100GeV	29.2%	7.14				
==2 electron cands, E	>100GeV	28.3%	6.93	geometrical			
opposite charge		27.7%	6.79	acceptance			
DeltaEta>1		26.5%	6.49				
ie, 9375 events in 1.5 ab ⁻¹							

Backgrounds

Leading background

	eeH signal		qqll background	
	surviving	xs/fb	surviving	xs/fb
All events		24.47		2726.7
>= 2electron cands, <i>E</i> >100GeV	29.2%	7.14	2.1%	58.02
==2 electron cands, <i>E</i> >100GeV	28.3%	6.93	2.1%	56.86
opposite charge	27.7%	6.79	2.0%	54.41
DeltaEta>1	26.5%	6.49	1.8%	48.12

◆ Backgrounds well-suppressed – but still 8x signal

Aidan Robson

Likelihood

Using event variables

- electron ΔR
- recoil mass

Construct probabilities $L_{sig} = P_{sig}(\Delta R) \times P_{sig}(m_{recoil}) \times P_{sig}(y_{34})$

Signal likelihood:

Signal likelihood

Background normalised to signal here Background is actually ~8 x signal here

Final state

• look at m_{jj} for the two jets not matching the electron candidates:

Can include m_{jj} in likelihood and improve separation
... but then H->bb and H->WW look quite different

all events passing preselection

Background normalised to signal here Background is actually ~8 x signal here

Final state with b-tag

- alternative way of improving signal separation:
- explicitly select H->bb by requiring both jets to have a b-tag

Final state with b-tag

	eeH signal		qqll back	dataset 2645 Ground
	surviving	xs/fb	surviving	xs/fb
All events		24.47		2726.7
>= 2electron cands, E>100GeV	29.2%	7.14	2.1%	58.02
==2 electron cands, E>100GeV	28.3%	6.93	2.1%	56.86
opposite charge	27.7%	6.79	2.0%	54.41
DeltaEta>1	26.5%	6.49	1.8%	48.12
4-jet topology has 2 jets matching electron cands	23.3%	5.70	1.4%	39.18
2 (truth) b-tags	12.5%	3.06	0.2%	6.26

ie, 4590 events in 1.5 ab⁻¹

Other backgrounds with two electrons, two jets, eg top:

low dielectron mass and separation compared to signal

Extracting physics

• Avoiding selecting a final state gives access to g_{HZZ} (and Γ_{H}) only; however sensitivity is limited.

 ♦ Including the reconstructed final state selects mostly H->bb, plus some H->WW, with statistical uncertainty on cross-section of ~1% in 1.5 ab⁻¹.

♦ Explicitly requiring H->bb using b-tag gives clean signal separation but increases statistical uncertainty to ~1.5%.

◆ Ratio of σ (ee→eeH).Br(H→bb) to σ (ee→vvH).Br(H→bb) is promising for the ratio $g_{HZZ/}g_{HWW}$ without g_{Hbb} or Γ_{H}

• Systematic uncertainty on cross-section measurement is fairly large because detector acceptance truncates electron η distribution.

Summary

 We have reconstructed ZZ fusion events at 1.4TeV, using fully-measured forward electrons, with an acceptance of around 30%.

 Signal has been separated from background using a simple likelihood technique.

 Signal sensitivity is limited when assuming nothing about the final state, except that it is visible;

 ♦ but with some assumption about the ratio of H->bb and H->WW, the signal : background is good (statistical uncertainty on cross-section ~1.5%).

 Alternatively, the H->bb final state can be successfully isolated using b-tagging (statistical uncertainty ~1%).