Polarisation Measurement and Spin Tracking at the ILC

Moritz Beckmann, Jenny List, <u>Annika Vauth</u>, Benedikt Vormwald

International Workshop on Future Linear Colliders

Tokyo, 14.11.2013

Introduction

Compton Polarimeters

Compton Polarimetry Detector R&D

Spin Tracking

Conclusions and Future Plans

Introduction

Compton Polarimeters

Compton Polarimetry Detector R&D

Spin Tracking

Conclusions and Future Plans

Polarisation for Physics.

Longitudinal polarisation $P_z = \frac{N_R - N_L}{N_R + N_L}$

with $N_{R,L}$: number of right-/left-handed particles in bunch

> SM & BSM: left- and righthanded particles couple differently

- polarised cross-sections are important observables carrying qualitatively new information!
- beam polarisation can suppress background / enhance signal
- ► wanted for physics: luminosity weighted average polarisation at the IP, $\langle P_z \rangle_{IP} = \frac{\int P_z(t)\mathcal{L}(t)dt}{\int \mathcal{L}(t)dt}$
- Note: most physics studies sofar assume this average is known exactly and independently for e⁻ and e⁺ beam.
- $P \equiv P_z$ in the following.

Impact of Polarisation Uncertainty.

- SM precision measurements, eg. A_{LR} at Z pole will be limited by polarisation knowledge
 - ightarrow simultaneous extraction of A_{LR} and $\langle P_{
 m eff}
 angle_{IP}$
 - BSM example: WIMP Dark Matter Search

Polarimetry concept for the ILC.

Goal for ILC polarimetry: per mille level precision by combining

- (1) Compton polarimeter measurements upstream and downstream of the e^+e^- interaction point
- 2 Spin tracking studies to relate these measurements to the polarization at the e^+e^- interaction point
- 3 Long-term average determined from e⁺e⁻ collision data as absolute scale calibration

Introduction

Compton Polarimeters

Compton Polarimetry Detector R&D

Spin Tracking

Conclusions and Future Plans

Introduction

Compton Polarimeters Compton Polarimetry

Detector R&D

Spin Tracking

Conclusions and Future Plans

ILC Polarimetry | A. Vauth | LCWS '13, 14.11.13 | 4/17

Compton polarimeters.

- > $\mathcal{O}(10^3)$ Compton scatterings/bunch
- > Energy spectrum of scattered e^+/e^- depends on polarisation
- > Magnetic chicane: energy distibution \rightarrow position distribution
- > Measure number of e^+/e^- per detector channel

Spin Tracking

Conclusions

Measurement principle (1).

Compton rate asymmetry is proportional to the beam polarisation:

ILC Polarimetry | A. Vauth | LCWS '13, 14.11.13 | 5/17

Spin Tracking

Measurement principle (1).

Compton rate asymmetry is proportional to the beam polarisation:

ILC Polarimetry | A. Vauth | LCWS '13, 14.11.13 | 5/17

Measurement principle (2).

Magnetic Chicane...

- transforms energy spectrum into spatial distribution
- \succ behind chicane: \sim 20 cm wide
- detect Compton electrons over this area

Detector requirements:

- Total ionising dose up to 100 Mrad / year
- read out signals of 1000-2000 Compton electrons (25-250 GeV) every bunch crossing
- either very linear response or "counting" electrons
- \succ alignment to \sim 100 μ m and \sim 1 mrad
- suppression of background from low energetic particles

Detector Options.

Simple, robust, fast: Cherenkov detectors

- Cherenkov light emission proportional to number of electrons
- independent of electron energy (once relativistic)
- successfully used in best polarimeter sofar at SLC
- gas or quartz option for Cherenkov medium

Detector Options.

Simple, robust, fast: Cherenkov detectors

- Cherenkov light emission proportional to number of electrons
- independent of electron energy (once relativistic)
- successfully used in best polarimeter sofar at SLC
- gas or quartz option for Cherenkov medium

Goal: total uncertainty $\Delta P/P \approx 0.25$ %, of which

- Iaser: 0.1 %
- ➤ analysing power (i.e. asymmetry at $\mathcal{P} = 1$): 0.2%
 → Cherenkov detector design
- > detector linearity: 0.1 % \Rightarrow photodetector calibration

Introduction

Compton Polarimeters

Compton Polarimetry Detector R&D

Spin Tracking

Conclusions and Future Plans

ILC Polarimetry | A. Vauth | LCWS '13, 14.11.13 | 8/17

Spin Tracking

Conclusions

Gas Cherenkov detector.

Alignment: locate Compton edge in the spectrometer Segmented photodetectors: Tilt alignments via asymmetries

2-channel prototype tested at ELSA [JINST 7, P01019 (2012)] \Rightarrow tilt alignment of 0.1°, nearly fulfils alignment requirements

Spin Tracking

Conclusions

Quartz Cherenkov detector.

Alternative detector concept: quartz detector

- \blacktriangleright Higher refractive index \rightarrow higher photon yield
- > For enough photons per Compton e^- :
 - \rightarrow calibrate gain directly from the data

4-channel prototype operated at DESY II testbeam this year.

Spin Tracking

Calibration of detector non-linearity.

PMTs have to be calibrated to non-linearity < 0.5 %.

$$\mathcal{P} \propto rac{N^+ - N^-}{N^+ + N^-}$$
: no absolute calibration needed.

 \rightarrow Differential calibration method using two LEDs:

Spin Tracking

Test of non-linearity correction.

Simulations: Corrections of non-linearities up to 4 % possible.

Spin Tracking

Test of non-linearity correction.

Simulations: Corrections of non-linearities up to 4 % possible. Applied method to one of the photodetectors used in testbeam:

 \Rightarrow Reached non-linearity < 0.2% in the expected dynamic range, in single polarimeter channels even smaller.

Introduction

Compton Polarimeters

Compton Polarimetry Detector R&D

Spin Tracking

Conclusions and Future Plans

ILC Polarimetry | A. Vauth | LCWS '13, 14.11.13 | 12/17

Spin Tracking

Spin Tracking along the BDS.

The Beam Delivery System in the TDR

- upstream polarimeter separated from emittance measurement
- behind the tune-up dump extraction line

Spin Tracking

Extraction Line.

Downstream Polarimeter

- Iocated at secondary focus
- > 6-magnet chicane kicks Compton e^{\pm} out of synchrotron fan

Cross-calibration of Polarimeters.

Without Collisions: predict value at downstream location from upstream measurement

	effect on $P[10^{-3}]$
Beam and detector alignment at polarimeters	0.72
($\Delta heta_{bunch} =$ 50 μ rad, $\Delta heta_{pol} =$ 25 μ rad)	
Variation in emittances	0.03
Crabbing	< 0.01
Detector magnets	0.01
Emission of synchrotron rad.	0.005
random misalignments (10 µm)	0.43
Total	0.85

Collision Effects.

- > Without beamstrahlung: extraction line optics retrieves $\langle P \rangle_{IP}$ at downstream polarimeter
- > With increasing beamstrahlung (energy loss!): difference to $\langle P \rangle_{IP}$ increases to few permille
- \blacktriangleright Effect doubles from RDR \rightarrow TDR parameters

Introduction

Compton Polarimeters

Compton Polarimetry Detector R&D

Spin Tracking

Conclusions and Future Plans

ILC Polarimetry | A. Vauth | LCWS '13, 14.11.13 | 16/17

Conclusions.

Permille-level precision on lumi-weighted average polarisation at IP required by physics, needs combination of

- > scale calibration from e^+e^- collision data
- > upstream (UP) and downstream (DP) polarimeters
 - ► UP: time resolution
 - > **DP**: collision effects
 - combined: cross-check, lumi-weighted polarisation @ IP
- spin tracking and understanding of collision effects

Compton Polarimeters:

- beam-detector alignment & detector linearity crucial
- R&D well underway
- \succ cross-calibration without collisions: \sim 0.1% from alignment
 - esp. orbit and spin at UP and DP locations (2 km apart)

Next Steps.

Polarisation from collision data:

> systematic evaluation of various approaches \rightarrow combination?

Luminosity-weighted average polarisation:

- collision effects with TDR beam parameters and lattice
- how to combine polarimeter measurements, luminosity measurement and collision data?

Realisation:

- site specific misalignments, ground motion etc
- revisit laser systems (site specific, new laser technologies...)
- design chicane magnets and vacuum chamber (wide!)
- > detectors: prototypes \rightarrow full-scale, DAQ, ...

Backup Slides.

Compton edge position nearly independent of beam energy

Gas Cherenkov detector: Alignment.

If the detector is tilted

- \succ beam path through the detector varies \Rightarrow different light path
- different light pattern on the photocathode
 - \Rightarrow alignment via spatial assymetries possible:

 \Rightarrow Reached a tilt alignment of 0.1°. [JINST 7, P01019 (2012)]

4-channel prototype operated at DESY II testbeam this year

- channels: quartz bars
 (5 mm x 18 mm x 100 mm)
- qualitative agreement with simulations (angular dependence, etc.)
- light yield smaller than predicted, studies ongoing

Calibration source requirements.

Requirements on the LED driver:

- > wave length in UV range ($\lambda = 405$ nm)
- \succ applicable in detector design \rightarrow small
- short light pulses (< 10 ns)</p>
- coverage of the whole dynamic range of the expected signal
- reproducable and stable light pulses

Non-linearity in extreme polarimeter channels.

- up to 210 Compton *e*⁻ (\sim 1200 QDC counts)
- overall non-linearity already small in this range (max 0.2%)
- in single channels even smaller

600

mean [QDC counts]

1200

-0.4

0

Non-linearity in extreme polarimeter channels.

- up to 210 Compton e^- (~ 1200 QDC counts)
- verall non-linearity already small in this range (max 0.2%)
- > in single channels even smaller

600

mean [QDC counts]

0

1200

Non-linearity in extreme polarimeter channels.

- up to 210 Compton e^- (~ 1200 QDC counts)
- verall non-linearity already small in this range (max 0.2%)
- > in single channels even smaller

Movable Laser Beam

Spin tracking (more).

Beam Energy Spectrum After Collision.

Downstream Polarimeter: *y* vs *E*.

Polarised Cross-sections.

$$\begin{split} \sigma_{P_{e^-}P_{e^+}} &= \frac{1}{4} \quad \{ \quad (1+P_{e^-})(1+P_{e^+})\sigma_{RR} + (1-P_{e^-})(1-P_{e^+})\sigma_{LL} \\ &+ \quad (1+P_{e^-})(1-P_{e^+})\sigma_{RL} + (1-P_{e^-})(1+P_{e^+})\sigma_{LR} \} \end{split}$$

processes with *s*-channel Z/γ exchange only:

general case:

$$\sigma_{RR} \neq \sigma_{LL} \neq 0$$

$$4\sigma_{P_{e^{-}}P_{e^{+}}} = (1 + P_{e^{-}}P_{e^{+}})(\sigma_{LL} + \sigma_{RR})[1 + P_{eff}^{+}A_{LLRR}] + above$$

$$with P_{eff}^{+} = 1 + \frac{P_{e^{-}} + P_{e^{+}}}{1 + P_{e^{-}}P_{e^{+}}} and A_{LLRR} = \frac{\sigma_{LL} - \sigma_{RR}}{\sigma_{LL} + \sigma_{RR}}$$

Absolute cross-section measurements require:

$$\langle P_{e^{\pm}} \rangle_{IP} = \frac{\int P_{e^{\pm}}(t)\mathcal{L}(t)dt}{\int \mathcal{L}(t)dt}$$

$$\langle P_{e^{-}}P_{e^{+}} \rangle_{IP} = \frac{\int P_{e^{-}}(t)P_{e^{+}}(t)\mathcal{L}(t)dt}{\int \mathcal{L}(t)dt}$$

correlations between lumi and polarisation?!

Direct extraction from collision data

Methods studied sofar

- total cross-sections:
 - WW at 500 GeV and 1 TeV (ILD, full sim)
 - single W etc at 3 TeV (CLIC, cross-section level)
- single-differential cross-sections:
 - WW at 500 GeV and 1 TeV (ILD, full sim)
- b double-differential cross-sections:
 - > WW at 1 TeV (SiD, full sim)

How much running time needed for ++ and --?

- like-sign combinations less interesting for SM phyics
- 10% to 20% like-sign lumi rather close to optimum (50%)
- even 2% halfs already total lumi needed for 0.2% precision

Unequal Polarisations.

What happens if $P_+(e^-) \neq -P_-(e^-)$ and $P_+(e^+) \neq -P_-(e^+)$?

Measure enough cross-sections to determine all polarisations:

eg single W,Z,γ with ++, --, +-, -+, +0, -0, 0+, 0 precision significantly worse than for equal | P | assumption
 [cf. G. Wilson, LCWS 2012]

Assume |P| equal up to $2\epsilon^{\pm}$ – measure ϵ^{\pm} with polarimeters:

>
$$P_+(e^{\pm}) = P^{\pm} + \epsilon^{\pm}$$
 and $P_-(e^{\pm}) = P^{\pm} - \epsilon^{\pm}$
> $\delta P_-(e^{\pm})$ (or δA_{-}) come order of magnitude as δe^{\pm}

> $\delta P_+(e^{\pm})$ (or δA_{LR}) same order of magnitude as δe^{\pm} and e^{\pm}

 \Rightarrow need polarimetry at permille-level and fast helicity reversal for both beams What happens if $P_+(e^-) \neq -P_-(e^-)$ and $P_+(e^+) \neq -P_-(e^+)$?

- ► let all *P* vary independently $\Rightarrow \delta P / P$ in *percent* regime
- > better: difference to $\pm \delta P / P|_{pol} = 0.25\%$ with polarimeters
- limits ultimate precision on $P(e^{-})!$

 \Rightarrow need polarimetry at permille-level and fast helicity reversal for both beams

... for both beams:

collect data for all helicity configurations simultaneously

- roughly equal polarisation (absolute) values for all data sets
- cancellation of time dependent effects also in main detector!

Counter example HERA:

- slow helicity reversal: weeks between flips
- > differences in $\langle P_e \rangle_{IP}$: rely on polarimeters
- \succ uncertainty \sim 2%

Collisions	$P_e[\%]$	$\mathcal{L}[\text{pb}^{-1}]$
$e^+ ho$	+32	98
$e^+ ho$	-38	82
e ⁻ p	+37	46
e^-p	-26	103

Phys. Lett. B704 (2011) 388 [arxiv:1107.3716] (H1 Leptoquarks)

Correction to modified Blondel scheme.

$$P_+(e^{\pm}) = P^{\pm} + \epsilon^{\pm}$$
 and $P_-(e^{\pm}) = P^{\pm} - \epsilon^{\pm}$

