# from the view point of Energy Management, Efficiency and Sustainability

ILC

Junpei Fujimoto (KEK) on behalf of the collaboration with Masakazu Yoshioka (KEK)

LCWS13 Univ. of Tokyo 14/11/2013

# Plan

- 1. Introduction
- 2. Current situation of Electric power supply in Japan
- 3. ILC : Accelerator component design in considering high power-efficiency
  - > Klystron
  - Availability based on MTBF and MTTR
- 4. Summary

# 1. Introduction

#### Table 11.6

Estimated DKS power loads (MW) at 500 GeV centre-of-mass operation. 'Conventional' refers to power used for the utilities themselves. This includes water pumps and heating, ventilation and air conditioning, (HVAC). 'Emergency' power feeds utilities that must remain operational when main power is lost.

| Accelerator            |          |       |            |       | Conv   | ventional |        |
|------------------------|----------|-------|------------|-------|--------|-----------|--------|
| section                | RF Power | Racks | NC magnets | Cryo  | Normal | Emergency | Total  |
| $e^-$ sources          | 1.28     | 0.09  | 0.73       | 0.80  | 1.47   | 0.50      | 4.87   |
| $\mathrm{e}^+$ sources | 1.39     | 0.09  | 4.94       | 0.59  | 1.83   | 0.48      | 9.32   |
| DR                     | 8.67     |       | 2.97       | 1.45  | 1.93   | 0.70      | 15.72  |
| RTML                   | 4.76     | 0.32  | 1.26       |       | 1.19   | 0.87      | 8.40   |
| Main Linac             | 52.13    | 4.66  | 0.91       | 32.00 | 12.10  | 4.30      | 106.10 |
| BDS                    |          |       | 10.43      | 0.41  | 1.34   | 0.20      | 12.38  |
| Dumps                  |          |       |            |       | 0.00   | 1.21      | 1.21   |
| IR                     |          |       | 1.16       | 2.65  | 0.90   | 0.96      | 5.67   |
| TOTALS                 | 68.2     | 5.2   | 22.4       | 37.9  | 20.8   | 9.2       | 164    |
|                        |          |       |            |       |        |           |        |

### The electricity statistics on August 21, 2013, all in Japan

- Availability: 169GWatt
- Amount usage: 154GW (91%)

ILC electricity demand is 0.1% of the current availability in Japan. We have to think about the realization of a better and sustainable electricity system from beginning of the project.

# 2. Current situation of electric power in Japan

The March 11, 2011 earthquake brought down serious damage to the Japanese electricity system. (Of course more severe damage to the people's life especially at FUKUSHIMA)

Now, no nuclear power plant is in operation. More than 20% of the total availability is disappearing.



This summer, it was very hot, high humid, and Japanese economy was bullishness.

Nevertheless we could survive without nuclear power,

by increasing electricity from fossil fuel,

which results serious trade imbalance,

and by saving electricity.



### **High energy density**



1. Sustainable power generation

- As clean as possible
  - DeNO<sub>x</sub> and DeSO<sub>x</sub>
  - > De-Mercury
  - ➢ De-PM2.5
- High efficiency generation
  - Coal > 45%
  - ➢ LNG > 60%
- Grid power flow control
  - Margin should be as low as possible <3%</p>
- Development of new energy
  - Wind, solar, biomass, geothermal-----
  - > Tidal wave, algal------

Since, accelerators are electric power gluttonous → we have to consider-----

2. ILC design and manufacturing should be made by considering-----

- performance/AC power
- component power efficiency
  - High power RF
  - MTBF and MTTR

3. Energy recovery

- from cooling water
- from beam power, directly

Low energy density

➢ etc.

12 big electrical companies in operation
10 regional monopoly + J-POWER + JAPC
Two frequencies: 50Hz (east), 60Hz (west)
Unified system of generation and supply



J-POWER: wholesale power company Availability: 17.0GW (2013) JAPC: Japan Atomic Power Company

# Statistics of Aug.21, 2013

| 2013/8/21                       |                     |                                       |                   |  |  |
|---------------------------------|---------------------|---------------------------------------|-------------------|--|--|
| Company                         | Amount used<br>(GW) | Instantaneous<br>Availability<br>(GW) | Usage Rate<br>(%) |  |  |
| Hokkaido                        | 4.23                | 5.50                                  | 76.9              |  |  |
| Tohoku                          | 12.18               | 14.96                                 | 81.4              |  |  |
| Tokyo                           | 47.42               | 52.09                                 | 91.0              |  |  |
| Chubu                           | 25.37               | 27.27                                 | 93.0              |  |  |
| Hokuriku                        | 4.86                | 5.26                                  | 92.3              |  |  |
| Kansai                          | 27.54               | 28.81                                 | 95.5              |  |  |
| Chugoku                         | 11.09               | 11.68                                 | 94.9              |  |  |
| Shikoku                         | 5.34                | 5.74                                  | 93.0              |  |  |
| Kyushu                          | 16.24               | 17.49                                 | 92.8              |  |  |
| Okinawa                         |                     | 4.68(Max. )                           |                   |  |  |
| Total<br>(excluding<br>Okinawa) | 154.27              | 168.80                                | 91.4              |  |  |

#### Peak demand in summer appears when----

- Hot temperature
- High humidity
- Weekday
- High-school baseball tournament



Usage rate should be < 97% of availability to ensure stable supply (in Japan) based on excellent grid flow control

Tight supply-demand balance, but it is well controlled by the save on electricity !

# Comparison before and after the earthquake



### It is clearly seen that

the lack of electricity is recovered with fossil fuel generation, resulting big problem of trade imbalance and
the total demand is reduced by saving electricity.





### Solution-1: LNG GTCC(Gas turbine combined cycle) power plant Gas turbine (similar to jet engine) + steam turbine using exhaust heat effectively



Steam temperature from exhaust heat recovery boiler: 650~700°C/170 atm.



Solution-2: Coal power plant with high burning temperature Steam condition: Sub-critical → Super-critical → Ultra-super-critical DeSOx, NOx, CO2, Mercury, PM2.5, Coal gas plant in future → Fix CO2

> J-POWER: leading company of Japan to develop new type of coal fired power plant. Present availability: 8.4GW



#### USC steam condition makes better efficiency

# History of J-POWER's Thermal Efficiency Improvements

The world's highest level of thermal efficiency has been achieved at Isogo Power Station by continuous efforts on upgrading steam conditions since 1960s.



#### LHV: Lower Heating Value -> generated electric power/total input energy

POWER

### SOx and NOx Emissions of Fossil-fired Power Generation by Country

SOx and NOx emissions from J-POWER's coal-fired power stations are much lower than that from the major developed countries' fossil-fired power stations

POWER

With the most advanced clean coal technologies, SOx and NOx emissions from Isogo PS are at almost the same level of gas-fired power plants.





Key element → Activated coke (AC) is a carbonaceous material produced by steam activation (at approximately 900°C [1650 F]). → very strong adsorption power

Nm3: normal volume

# Remaining issue of fossil fuel power generation is to fix CO<sub>2</sub>, as much as possible

#### 二酸化炭素回収·貯留技術





### 1. Introduction

- 2. Current situation of Electric power supply in Japan
- 3. ILC : Accelerator component design in considering high power-efficiency
  - Klystron
  - Availability based on MTBF and MTTR
- 4. Summary

# 500 GeV Parameters



| Max. E <sub>cm</sub><br>Luminosity<br>Polarisation (e-/e+) | 500 GeV<br>1.8×10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup><br>80% / 30%<br>4.5% |
|------------------------------------------------------------|---------------------------------------------------------------------------------------|
| $\sigma_x / \sigma_y$                                      | 574 nm / 6 nm                                                                         |
| $\sigma_z$                                                 | 300 μm                                                                                |
| $\gamma \epsilon_x / \gamma \epsilon_y$                    | 10 μm / 35 nm                                                                         |
| $\beta_x / \beta_y$                                        | 11 mm / 0.48 mm                                                                       |
| bunch charge                                               | 2×10 <sup>10</sup>                                                                    |
| Number of bunches / pulse                                  | 1312                                                                                  |
| Bunch spacing                                              | 554 ns                                                                                |
| Pulse current                                              | 5.8 mA                                                                                |
| Beam pulse length                                          | 727 μs                                                                                |
| Pulse repetition rate                                      | 5 Hz                                                                                  |
| Average beam power                                         | 10.5 MW (total)                                                                       |
| Total AC power                                             | 163 MW                                                                                |
| linacs AC power                                            | 107 MW)                                                                               |

### N. Walker (DESY) – ILC Worldwide Event – CERN – 12 June 2013

#### Table 11.6

Estimated DKS power loads (MW) at 500 GeV centre-of-mass operation. 'Conventional' refers to power used for the utilities themselves. This includes water pumps and heating, ventilation and air conditioning, (HVAC). 'Emergency' power feeds utilities that must remain operational when main power is lost.

|          |                                                   |                                                                                                   | -                                                                                                     | Conventional                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                           |
|----------|---------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RF Power | Racks                                             | NC magnets                                                                                        | Cryo                                                                                                  | Normal                                                                                                                            | Emergency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lotal                                                                                                                                                                                                       |
| 1.28     | 0.09                                              | 0.73                                                                                              | 0.80                                                                                                  | 1.47                                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.87                                                                                                                                                                                                        |
| 1.39     | 0.09                                              | 4.94                                                                                              | 0.59                                                                                                  | 1.83                                                                                                                              | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.32                                                                                                                                                                                                        |
| 8.67     |                                                   | 2.97                                                                                              | 1.45                                                                                                  | 1.93                                                                                                                              | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.72                                                                                                                                                                                                       |
| 4.76     | 0.32                                              | 1.26                                                                                              |                                                                                                       | 1.19                                                                                                                              | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.40                                                                                                                                                                                                        |
| 52.13    | 4.66                                              | 0.91                                                                                              | 32.00                                                                                                 | 12.10                                                                                                                             | 4.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 106.10                                                                                                                                                                                                      |
|          |                                                   | 10.43                                                                                             | 0.41                                                                                                  | 1.34                                                                                                                              | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.38                                                                                                                                                                                                       |
|          |                                                   |                                                                                                   |                                                                                                       | 0.00                                                                                                                              | 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.21                                                                                                                                                                                                        |
|          |                                                   | 1.16                                                                                              | 2.65                                                                                                  | 0.90                                                                                                                              | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.67                                                                                                                                                                                                        |
| 68.2     | 5.2                                               | 22.4                                                                                              | 37.9                                                                                                  | 20.8                                                                                                                              | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 164                                                                                                                                                                                                         |
|          | RF Power<br>1.28<br>1.39<br>8.67<br>4.76<br>52.13 | RF Power   Racks     1.28   0.09     1.39   0.09     8.67   0.32     4.76   0.32     52.13   4.66 | RF PowerRacksNC magnets1.280.090.731.390.094.948.672.974.760.321.2652.134.660.9110.4310.4368.25.222.4 | RF PowerRacksNC magnetsCryo1.280.090.730.801.390.094.940.598.672.971.454.760.321.2652.134.660.9132.0010.430.410.4168.25.222.437.9 | $\begin{array}{c cccc} \mbox{RF Power} & \mbox{Racks} & \mbox{NC magnets} & \mbox{Cryo} & \begin{tabular}{c cccc} \hline $Cryo$ & $1.00$ \\ \hline $Normal$ \\ \hline $Normal$ \\ \hline $Normal$ \\ \hline $1.28$ & $0.09$ & $0.73$ & $0.80$ & $1.47$ \\ \hline $1.39$ & $0.09$ & $4.94$ & $0.59$ & $1.83$ \\ \hline $8.67$ & $2.97$ & $1.45$ & $1.93$ \\ \hline $8.67$ & $2.97$ & $1.45$ & $1.93$ \\ \hline $4.76$ & $0.32$ & $1.26$ & $1.19$ \\ \hline $52.13$ & $4.66$ & $0.91$ & $32.00$ & $12.10$ \\ \hline $10.43$ & $0.41$ & $1.34$ \\ \hline $0.00$ \\ \hline $1.16$ & $2.65$ & $0.90$ \\ \hline $68.2$ & $5.2$ & $22.4$ & $37.9$ & $20.8$ \\ \end{array}$ | RF PowerRacksNC magnetsCryoConventional1.280.090.730.801.470.501.390.094.940.591.830.488.672.971.451.930.704.760.321.261.190.8752.134.660.9132.0012.104.3010.430.411.340.200.001.211.162.650.900.960.960.91 |





| Table 12.6              |
|-------------------------|
| Rough estimate of the   |
| power requirements      |
| (in MW) for the 1 TeV   |
| upgrade (scenario B),   |
| based on extrapolation  |
| of the baseline design  |
| parameters using simple |
| scaling laws [232].     |
|                         |

|                       | RF    | RF    | NC      | Cryo | Conventional load |           | Total |
|-----------------------|-------|-------|---------|------|-------------------|-----------|-------|
|                       | Power | Racks | Magnets |      | Normal            | Emergency |       |
| $e^-$ source          | 1.3   | 0.1   | 0.7     | 0.8  | 1.0               | 0.2       | 4.1   |
| $\mathrm{e}^+$ source | 1.4   | 0.1   | 4.9     | 0.6  | 2.2               | 0.4       | 9.6   |
| DR                    | 12.8  |       | 4.5     | 1.5  | 2.6               | 0.1       | 21.5  |
| RTML                  | 7.2   | 0.3   | 2.1     | 2.0  | 0.1               | 0.1       | 11.8  |
| ML (base)             | 59.2  | 7.4   | 0.9     | 28.3 | 7.8               | 5.2       | 108.8 |
| ML (upgrade)          | 74.2  | 7.4   | 0.7     | 25.1 | 10.2              | 3.9       | 121.3 |
| BDS                   |       |       | 16.1    | 0.4  | 0.2               | 0.3       | 17.1  |
| Dumps                 |       |       |         |      | 1.0               |           | 1.0   |
| IR                    |       |       | 1.2     | 2.7  | 0.1               | 0.2       | 4.2   |
| Total                 | 156   | 15    | 31      | 61   | 25                | 10        | 300   |





©Rey.Hori/KEK

# Klystron

# For High power efficiency

# Lower the perveance



### [Conventional]

- Single electron beam
- Higher the cathode loading, shorter the lifetime
- efficiency 40-50%
- ~180 KV high voltage gun

### [Multi-beam]

- Multi-beam (6 beams)
- Lower the cathode loading, the longer the lifetime
- Efficiency > 65%
- <120 KV lower voltage</p>

# TOSHIBA Multi-Beam Klystron(MBK) E3736



# TOSHIBA Multi-Beam Klystron(MBK) E3736



|                      | Design     | Achieved   | l                 |
|----------------------|------------|------------|-------------------|
| Frequency 1.3        | 1.3        | GHz        |                   |
| Output power         | 10         | 10.2       | MW                |
| Output power (Av.) 1 | 150        | 153        | kW                |
| Beam voltage         | 115        | 115        | kV                |
| Beam current         | 132        | 134        | Α                 |
| Efficiency           | > 65       | 67         | %                 |
| RF pulse width       | 1.5        | 1.5        | ms                |
| Repetition rate      | 10         | 10         | pps               |
| Saturation gain      | 47         | 49         | dB                |
| Number of beams      | 6          |            |                   |
| Cathode loading      | < 2.0      | 2.0        | A/cm <sup>2</sup> |
| Structure            | 6          |            | cavities          |
| RF window            | Pill box v | vith WR-65 | 0                 |
| Tube length          | 2270       | 2270       | mm                |
| Solenoid Power       | < 4        | 3.6        | kW                |



Electron gun: 6 beams

### Effort to realize high efficiency klystron -> Multi-beam (6 beams)





Scope picture of the klystron test. The lines show the klystron voltage (116 kV) in yellow, the current (128 A) in blue and RF output (5 MW each) in magenta and green.



# Availability based on MTBF and MTTR



R: reliabilityA: availabilityM: maintainability

# A = 1- (MTTR/MTBF)

MTTR: mean time to repair (or recover) MTBF: mean time between failures







# SLC: 3km long, 50GeV

# ILC should learn from the past experiences

| KEKB: 0.6km | long, | 8GeV |
|-------------|-------|------|
|-------------|-------|------|

|                           | SLC<br>1991~1995 | KEKB Linac<br>User run | KEKB Linac<br>Commissioning<br>phase |  |
|---------------------------|------------------|------------------------|--------------------------------------|--|
| No. of Modulator          | 244              | 59                     | 59                                   |  |
| Modulator MTBF<br>(hours) | 707              | 327                    | 177                                  |  |
| Modulator MTTR<br>(min.)  | 25.4             | 3                      | 17                                   |  |
| System MTBF<br>(hours)    | 2.9              | 5.5                    | 3                                    |  |
| Availability<br>(%)       | 85               | 99                     | 91                                   |  |

Availability of klystron modulator is the most important.

- 1. Introduction
- 2. Current situation of Electric power supply in Japan
- 3. ILC:Accelerator component design in considering high power-efficiency
  - > Klystron
  - Availability based on MTBF and MTTR

5. Summary



### **High energy density**



Since, accelerators are electric power gluttonous → we have to consider------

εις.

Low energy density

**All efforts** 

 As clear
As clear > De to down stream > De

> De

 High ef > Co

should be carried out. 

irectly

י----Ig

ιcy

- Grid power flow control
  - Margin should be as low as possible <3%
- Development of new energy
  - Wind, solar, biomass, geothermal-----
  - > Tidal wave, algal------