Higgs production in er collider

Norihisa Watanabe(KEK) In collaboration with Y. Kurihara(KEK) T. Uematsu(Kyoto U.) K. Sasaki(Yokohama National U.)

LCWS2013, November 12, Tokyo University

Outline

\cdot Introduction and motivations

- Higgs transition form factor
- Higgs production in e and real γ collision in SM
- · Numerical analysis
- · Summary

Introduction

- $\cdot\,$ A Higgs particle was found at the LHC
 - Is it the SM Higgs, a SUSY Higgs, a Higgs of different model ?
- Future linear collider: ILC
 - e^+e^- collider: $\sqrt{s} = 250 \text{GeV} \sim$
 - It may be constructed in Japan.
- Before e+ beams are ready, other options are possible
 - $e^{-}e^{-}/e^{-}r/rr$ option: using one beam to produce high energy photon

- DIS of the real photon
 - · Real photon structure functions,…
- Single top production
 - Direct measure CKM,…
- Doubly charged particles
 - · Higgs triplet model etc,…
- Higgs production
 - · Transition form factor,…
- · etc…

DIS of the real photon

· Real photon structure functions,…

- DIS of the real photon
 - · Real photon structure functions,…
- Single top production
 - Direct measure CKM,…

- DIS of the real photon
 - · Real photon structure functions,…
- Single top production
 - Direct measure CKM,…
- Doubly charged particles
 - · Higgs triplet model etc,…
- Higgs production
 - · Transition form factor,…
- · etc…

Higgs transition factor

- We evaluate the transition form factor of Higgs and its Q² dependence just like a transition form factor of π^{0}

Lapage-Brodsky(1980)

These give us the good information Higgs is elementary particle(SM) or not

Tree diagrams for Higgs production in e⁺e⁻ collision

Single tagging of scattered electrons The Z-fusion is the tree-level for ee→eeH

We consider e γ collision to avoid Z-fusion

Higgs production in 2γ process

One photon is virtual while other photon is real DIS of real photon

Scattering amplitude

 $M \equiv \langle H|T|\gamma^*(k_1)\gamma(k_2)\rangle = \epsilon^{\mu}(k_1)\epsilon^{\nu}(k_2) \ A_{\mu\nu}(k_1,k_2)$ $= [g^{\mu\nu}(k_1 \cdot k_2) - k_2^{\mu}k_1^{\nu}] S_1(m^2,Q^2,m_H^2)\epsilon_{\mu}(k_1)\epsilon_{\nu}(k_2)$

Transition form factor of Higgs • We define the transition form factor as $S_1(m^2, Q^2, m_H^2) / \left(\frac{ge^2}{(4\pi)^2} \frac{1}{m_W}\right) = F_{\text{total}}(Q^2, m_H^2) = \sum_f N_c e_f^2 F_{1/2}(\rho_f, \tau_f) + F_1(\rho_W, \tau_W)$ W boson Charged fermion NW-Kurihara-Sasaki-Uematsu(13) 15 This behaviour 10 Form Factor is important to F_{total} $F_l(\rho_W, \tau_W)$ check SM Higgs $N_{c}e_{t}^{2}F_{1/2}(\rho_{t},\tau_{t})$ 0 0.0 2.0 3.0 0.5 1.0 1.5 2.5 Q^2/m_H^2 7/18

$e\gamma$ collider

$e\gamma$ collider

 $e^-\gamma_{
m Laser}
ightarrow e^-\gamma$ can transfer 80% of energy to γ

cross section
$$\sigma_{e^-\gamma_{\text{Laser}}} = \int \frac{d\omega}{\omega} N(\omega) \sigma_{\text{part.}}(\omega)$$

• Higgs can be produced in $\gamma \gamma / e \gamma$ collider

- Higgs physics in $\gamma \gamma$ collider are studied Ginzburg-Krawczyk(2013)
- · Here we investigate Higgs production in e γ collider
 - We can measure the variable dependence

kinematics

$$s = (k_1 + k_2)^2 = 2k_1 \cdot k_2$$

$$t = (k_1 - k_1')^2 = -2k_1 \cdot k_1' = -Q^2$$

$$u = (k_1 - p_h)^2 = -2k_1' \cdot k_2$$

$$s + t + u = m_h^2$$

- Higgs are produced by loop diagrams
 - Calculation is done in unitary gauge
 - · Amplitudes are expressed in analytical form
- · Feynman diagrams at one-loop level
 - photon-photon/photon-Z fusion diagrams
 - · Other diagrams

· Fusion diagrams: $\gamma \gamma$ fusion

Top-quark loop

W boson loop

- γZ fusion: photon propag
- Form factor can be defined in

p

 e^{-k}

Other diagrams W-related diagrams

Polarized beam

Zero

Numerical analysis

Contribution of each topology

 $\gamma \gamma$ fusion is dominant below $\sqrt{s}=400$ GeV

Numerical analysis

· Initial photon has a energy band

Convolution like PDF $\sigma = 3.6 \text{fb}/9.8 \text{fb} \quad @\sqrt{s} = 250 \text{GeV}/500 \text{GeV}$ · Feasibility to find Higgs in b-decay channel $e + \gamma \rightarrow e + H \rightarrow e + b + \bar{b}$

Background exists at tree level

do [pb/GeV]

Numerical analysis

Higgs can be measured by mbb if using appropriate kinematical cut

Summary

- We studied the transition form factor of Higgs particle
- Higgs production in eγ collision was investigated in SM
 - Fusion diagrams \Rightarrow form factor
 - Other diagrams: W-related⇒polarized beam

Z-related \Rightarrow negligible

- Numerical analysis was performed
 - · The feasibility to find Higgs in e γ collision in b decay channel

Thanks for your attentions We hope $\gamma \gamma / e \gamma$ collider are realized