Higgs production in er collider

Norihisa Watanabe(KEK)
In collaboration with
Y. Kurihara(KEK)
T. Uematsu(Kyoto U.)
K. Sasaki(Yokohama National U.)

Outline

- Introduction and motivations
- Higgs transition form factor
- Higgs production in e and real r collision in SM
- Numerical analysis
- Summary

Introduction

- A Higgs particle was found at the LHC
- Is it the SM Higgs, a SUSY Higgs, a Higgs of different model?
- Future linear collider: ILC
- $\mathrm{e}^{+} \mathrm{e}^{-}$collider: $\sqrt{ } \mathrm{s}=250 \mathrm{GeV} \sim$
- It may be constructed in Japan.
- Before e+ beams are ready, other options are possible
- $\mathrm{e}^{-} \mathrm{e}^{-} / \mathrm{e}^{-} r / r r$ option:
using one beam to produce high energy photon

Physics @er collider

- DIS of the real photon
- Real photon structure functions,‥
- Single top production
- Direct measure CKM,‥
- Doubly charged particles
- Higgs triplet model etc,‥
- Higgs production
. Transition form factor,…
etc \cdots

Physics @er collider

- DIS of the real photon
- Real photon structure functions,‥

Physics @er collider

- DIS of the real photon
- Real photon structure functions, \cdots
- Single top production
- Direct measure CKM,‥

Physics @er collider

- DIS of the real photon
- Real photon structure functions,‥
- Single top production
- Direct measure CKM,‥
- Doubly charged particles
- Higgs triplet model etc,…
- Higgs production
- Transition form factor,…
etc \cdots

Higgs transition factor

- We evaluate the transition form factor of Higgs and its Q^{2} dependence just like a transition form factor of π^{0}

Lapage-Brodsky(1980)
These give us the good information Higgs is elementary particle(SM) or not

Tree diagrams for Higgs production in $\mathrm{e}^{+} \mathrm{e}^{-}$collision

Single tagging of scattered electrons
 The Z-fusion is the tree-level for ee \rightarrow eeH

We consider er collision to avoid Z-fusion

Higgs production in $2 r$ process

One photon is virtual while other photon is real DIS of real photon

Scattering amplitude

$$
\begin{aligned}
M & \equiv\langle H| T\left|\gamma^{*}\left(k_{1}\right) \gamma\left(k_{2}\right)\right\rangle=\epsilon^{\mu}\left(k_{1}\right) \epsilon^{\nu}\left(k_{2}\right) A_{\mu \nu}\left(k_{1}, k_{2}\right) \\
& =\left[g^{\mu \nu}\left(k_{1} \cdot k_{2}\right)-k_{2}^{\mu} k_{1}^{\nu}\right] S_{1}\left(m^{2}, Q^{2}, m_{H}^{2}\right) \epsilon_{\mu}\left(k_{1}\right) \epsilon_{\nu}\left(k_{2}\right)
\end{aligned}
$$

Transition form factor of Higgs

- We define the transition form factor as

$$
\begin{array}{r}
S_{1}\left(m^{2}, Q^{2}, m_{H}^{2}\right) /\left(\frac{g e^{2}}{(4 \pi)^{2}} \frac{1}{m_{W}}\right)=F_{\text {total }}\left(Q^{2}, m_{H}^{2}\right)=\sum_{\substack{\text { Charged fermion }}} N_{c} e_{f}^{2} F_{1 / 2}\left(\rho_{f}, \tau_{f}\right)+F_{1}\left(\rho_{W}, \tau_{W}\right) \\
\text { W boson }
\end{array}
$$

This behaviour is important to check SM Higgs

er collider

e r collider

Energy transfer of Compton scattering

$e^{-} \gamma_{\text {Laser }} \rightarrow e^{-} \gamma$ can transfer 80% of energy to γ cross section $\sigma_{e^{-} \gamma_{\text {Laser }}}=\int \frac{d \omega}{\omega} N(\omega) \sigma_{\text {part. }}(\omega)$

Higgs production in er collider

- Higgs can be produced in $r r / e r$ collider
- Higgs physics in $r r$ collider are studied
- Here we investigate Higgs production in er collider
- We can measure the variable dependence

kinematics

$$
\begin{aligned}
& s=\left(k_{1}+k_{2}\right)^{2}=2 k_{1} \cdot k_{2} \\
& t=\left(k_{1}-k_{1}^{\prime}\right)^{2}=-2 k_{1} \cdot k_{1}^{\prime}=-Q^{2} \\
& u=\left(k_{1}-p_{h}\right)^{2}=-2 k_{1}^{\prime} \cdot k_{2} \\
& s+t+u=m_{h}^{2}
\end{aligned}
$$

Higgs production in er collider

- Higgs are produced by loop diagrams
- Calculation is done in unitary gauge
- Amplitudes are expressed in analytical form
- Feynman diagrams at one-loop level
- photon-photon/photon-Z fusion diagrams

Other diagrams

Higgs production in e r collider

- Fusion diagrams: r r fusion

W boson loop

- $r Z$ fusion: photon propagator $\Rightarrow Z$ propagator
- Form factor can be defined in fusion diagrams

Higgs production in e r collider

- Other diagrams W-related diagrams

Polarized beam

Zero

Numerical analysis

Parameters

$$
m_{h}=125 \mathrm{GeV} \quad m_{t}=173 \mathrm{GeV} \quad m_{Z}=91 \mathrm{GeV} \quad m_{W}=80 \mathrm{GeV}
$$

t dependence of each topology

$r r$ fusion is dominant in forwardly region

Numerical analysis

Contribution of each topology

$r r$ fusion is dominant below $\sqrt{ } \mathrm{s}=400 \mathrm{GeV}$

Numerical analysis

- Initial photon has a energy band

Convolution like PDF $\sigma=3.6 \mathrm{fb} / 9.8 \mathrm{fb} @ \sqrt{s}=250 \mathrm{GeV} / 500 \mathrm{GeV}$

- Feasibility to find Higgs in b-decay channel

$$
e+\gamma \rightarrow e+H \rightarrow e+b+\bar{b}
$$

- Background exists at tree level

Numerical analysis

- Higgs can be measured by mbb if using appropriate kinematical cut

$$
\begin{aligned}
& \text { example } \\
& \sqrt{s}=500 \mathrm{GeV} \\
& 10^{\circ}<\theta_{e}<170^{\circ} \\
& 40^{\circ}<\theta_{b}<170^{\circ} \\
& \mathcal{L}=250 \mathrm{fb}^{-1} \\
& S_{\text {ideal }}=\frac{N_{\text {Sig }}}{\sqrt{N_{\text {Back }}}}=16.9
\end{aligned}
$$

Summary

- We studied the transition form factor of Higgs particle
- Higgs production in er collision was investigated in SM
- Fusion diagrams \Rightarrow form factor
- Other diagrams: W-related=polarized beam

Z-related =negligible

- Numerical analysis was performed
- The feasibility to find Higgs in er collision in b decay channel

Thanks for your attentions

We hope r r/e r collider are realized

