

Key Luminosity Issues of the Main Linac

Andrea Latina for AWG4

LCWS13 – Nov 11-15, 2013 – The University of Tokyo, Japan

Luminosity Issues in ILC ML

- Misalignments:
 - Pre-alignment in a distance range up to betatron period, ~ 400m
 - Tolerances based on simple assumptions (independent, random) are given.
 - Need realistic survey/alignment models.
- BPM scale error (calibration)
 - <10% required.</p>
 - For adjusting to non-zero design vertical dispersion.
- Cavity to cavity accelerating voltage flatness
 - (Cavity tilt) x (voltage change) < $(0.3 \text{ mm}) \times (1\%)$.

ILC ML static errors and cures

• Agreed "standard"

- Random Gaussian distributions are used for most studies
- DMS (Dispersion Matching Steering) as standard correction method
 - For dispersion measurement, change beam energy 10% ~ 20%
 - − BPM scale error is important ← non-zero design dispersion
 - Emittance / dispersion tuning bumps
- **Other methods** (Kick minimum, Ballistic, wake bumps, etc.) as additional or alternative corrections.
- **Simulations** have shown that the required performance are met
 - Several codes have been benchmarked at the occasion

Alignment, BPM requirements

"standard" alignment errors

Error	RTML and ML Cold	with respect to
Quad Offset	300 µm	cryo-module
Quad roll	300 µrad	design
RF Cavity Offset	300 µm	cryo-module
RF Cavity tilt	300 µrad	cryo-module
BPM Offset (initial)	300 µm	cryo-module
Cryomoduloe Offset	200 µm	design
Cryomodule Pitch	20 µrad	design

Independent Gaussian Random assumed in evaluation of all errors. Not based on realistic survey/alignment models. Distance range up to betatron period, ~ 400 m, is important.

Linac following earth's curvature, Vertical orbit w.r.t. the reference line and dispersion

DFS correction need to measure nonzero dispersion accurately. \rightarrow BPM Scale should be accurately calibrated.

Cavity Acc. Voltage Flatness

- Cavity tilt (alignment) + voltage change cause transverse orbit change
- Cavity by cavity Acc. Voltage "Flatness" required
 RF control for individual cavity, not only "Vector Sum"
- Tolerance:
 - (RMS cavity tilt) x (RMS Flatness) < $(300 \text{ um}) \times (1\%)$

Demonstrated at FLASH (TDR Part I 3.2)

Luminosity Issues in CLIC ML

(See also D. Schulte's overview yesterday)

- Misalignments -> pre-alingment, PACMAN, wake-monitors, beam-based alignment and tuning procedures
- Ground motion and technical noise -> stabilisation + feedback
- RF phase and amplitude jitter -> drive beam phase feedback, energy feedback
- RF breakdown rate
- Fast beam-ion instability -> vacuum
- **Temperature variations and effects on the beam** -> module programme
- Reliability -> FEL developments

Long-range wakefields

Bunch-to-bunch long-range wakefields can induce transverse instabilities leading to beam break-up.

Long-range wakefields are sine-like functions:

$$W_{\perp}(z) = \sum_{i}^{\infty} 2k_i \sin\left(2\pi \frac{z}{\lambda_i}\right) \exp\left(-\frac{\pi z}{\lambda_i Q_i}\right)$$

They can be reduced by

- Damping
- Detuning

Misalignments and BBA

- Rely on **Pre-Alignment of the main linac components**
 - to a level O(10 um) over a window of 200 m
- Beam-based Alignment procedure
 - Orbit steering correction
 - Dispersion-free steering using the Bunch Compressor
 - RF Alignment using the wakefield monitors
- Other methods as a reserve
 - Tuning bumps
 - Wakefield-free steering

Simulations show that the performance goals are met

CLIC Main Linac Alignment

Emittance preservation feasibility for LC: mainly simulation studies Currently and next period: experimental studies of alignment methods

• i.e. accuracy is approx. 13.5μm

5090 5110 5130 5150 5170 5190 5210 5230

Longitudinal position (m)

5250

CLIC Beam-Based Alignment tests at FACET

Dispersion-free Steering (DFS) proof of principle – March 2013

Before correction

After 1 iteration

After 3 iterations

A. Latina,

Emittance preservation – To do List

- Simulations with more realistic models of prealignment
- Integrated simulations of RTML+ML
 DFS in the main linac relies on the BC
- More experimental tests of BBA:
 - On-going experiments at FACET
 - emittance / dispersion tuning bumps
 - BC used for DFS: Tests at a FLASH / XFEL?
- More hardware tests (see next slide)

More hardware component tests

- Specific to CLIC:
 - Measurement of Long-range Wakefields in the CLIC AS
 - Experiment at SLAC does not seem to be possible
 - Wakefield monitors in the CLIC AS
- Common with ILC:
 - Impact of misaligned cavities on the beam
 - Impact of tilted cavities
- Specific to ILC:
 - Tests of cold Cavity-BPMs
 - Tests of Linearity of BPMs in cryomodules

Wakefield monitors: CTF3 as diagnostics test bed

(See R. Corsini's talk later)

Stripline Drive Beam BPM in TBL (CERN-LAPP)

Beam loading test facility

Average gradient 100 MV/m

Length, m

Test stand in CTF3 dog-leg to test gradient with **beam loading**

- Structure powered at full power with 12 GHz klystron
- 1 A drive beam sent through structure
- System begin commissioned
- Conditioned structure to come this year

CLIC Two-beam Module

Complete test modules:

- All safety measures implemented (power dissipation ~7 kW per module)
- DAQ and control system (Labview based) tested and validated
- First tests promising and in line with FEA simulations
- Tests of airflow possible in tunnel mockup
- Modules are equipped with heaters to study temperature changes and slow variations

Search

PACMAN Training Network, a study on: Particle Accelerator Components' Metrology and Alignment to the Nanometer scale

Search

Contact

Quadrupoles need to be stable to O(1nm) level @ 1HZ: Dedicated research test stand

See talk by J. Pfingstner later

Stabilisation Progress

Integrated studies of ground motion, hardware and beam allowed to define new specifications for motion sensors

New sensor is being developed First promising results

Position verified to be 0.25nm

Prototypes for module under production Long magnet design

Active Stabilisation Results

lapp

SYMME

p(f) [m²/Hz]

Stabilisation Experiment

Conclusions, and review of test facilities

- Long list of on-going experimental activities and experimental successes
 - CTF3, CLIC Two-Beam Module, FLASH, FACET, ATF2, etc. etc.
 - Keep going
- Theoretical studies are on-going, some new are needed
 - Pre-alignment models and simulations of integrated BBA: BC+ML
 - DMS with BPM calibration errors in ILC
 - Stabilisation
 - Review vacuum / fast ion-beam instability
- Experiments should continue, new experiments and hardware tests should be envisaged
 - BBA and emittance preservation, different methods, BC for DFS
 - CLIC AS long-range wakefields
 - Reliability: FEL developments