Full simulation study of Higgs CP mixing via tau pair decays at the ILC

<u>H. Yokoyama</u> (Tokyo), T. Tanabe (Tokyo), Y. Kurihara (KEK), S. Yamashita (Tokyo), S. Kawada (Hiroshima)

LCWS13 Higgs/EWSB session, University of Tokyo, November 14, 2013

Table of Contents

Introduction: motivation, LHC, H->tautau

- Physics: observable sensitive to Higgs CP
- Analysis overview
- Full simulation study

Introduction

- "Higgs boson" discovery at LHC -> Must determine its nature, e.g. CP
- BSM models (e.g. MSSM, 2HDMs) predict multiple Higgs fields, which cause CP violation in the Higgs sector. Determination of the CP mixing angle leads to search for new physics.
- At the LHC, Higgs CP is studied with the H→ZZ mode. However, for the HVV coupling, the CP-odd component can only appear in loops. Its sensitivity to the CP mixing angle is limited.
- Fermions can couple to CP-odd Higgs at the tree-level. H→ττ is potentially much more sensitive to the CP mixing angle. Study H→ττ at the ILC.
- In this talk, focus on the separation between CP-even and CP-odd pure states. The next step in the study is to determine the sensitivity to the CP mixing angle.

Higgs CP measurement at LHC

125 GeV Higgs being a pure CP-odd state is excluded.

p-value : 0.72% (spin 0, CP-odd) and 0.7 (spin 0, CP-odd), CMS 5.1 fb-1 @ 7 TeV, 12.2 fb-1 @ 8TeV

ATLAS Preliminary

 $H \rightarrow ZZ^{(*)} \rightarrow 4I$

Data

Svst.Unc.

Background ZZ^(*)

Background Z+jets, tł Signal (m_=125 GeV)

√s = 7 TeV: ∫Ldt = 4.6 fb⁻¹ √s = 8 TeV: ∫Ldt = 13.0 fb

$H \rightarrow ZZ$ channel is **less sensitive to CP admixture** because the CP-odd coupling is suppressed by a loop.

CP measurement from tau pair decays

Because of the neutrino(s) in the decay, the **tau momentum cannot be fully** reconstructed.

Use **impact parameter vector** to form a observable sensitive to the CP.

Events for CP measurement

Higgs production at $\sqrt{s} = 250$ GeV: ZH Associated production

Precision of **BR(H \rightarrow \tau \tau)** at the ILC is studied with full simulation (S. Kawada)

We use the same event selection for our Higgs CP study.

L = 250fb ⁻¹	# Signal Events	# Background Events	Statistical Significance
Z→ee	86.8	76	6.8
Z→µµ	103.1	91.2	7.4
Z→qq	808.5	554.4	21.9
Combined			24.1

xsec ~ 300fb (P(e-, e+)=(-0.8, 0.3)) Main background: ZZ(→ττ)

arXiv:1305.5489

Observable sensitive to CP: Acoplanarity angle

Definition of CP mixing angle

No assumption on specific model.

Effective lagrangian of Higgs-tau Yukawa descibing CP admixture.

$$au(\coslpha+i\sinlpha\,\gamma^5)ar{ au}\,\phi$$

a = 0 : CP-even $a = \pi/2$: CP-odd

This is CP-mixing angle !

CP-mixing angle affects kinematics of tau lepton decay. This is implemented by **TAUOLA.**

Spin correlation and CP mixing angle

Correlation in the transverse spin relative to the tau flight direction

Transverse spin correlation -> angle **Φ** between the two decay planes

Definition of acoplanarity angle

Acoplanarity angle distribution $(\tau^- \rightarrow \pi^- \nu, \tau^+ \rightarrow \pi^+ \nu)$

This tau decay mode has the best separation.

Unfortunately the rate is small: 1.2% of all $H \rightarrow \tau\tau$ events.

Acoplanarity angle for different tau decays

Decays involving more particles have less sensitivity.

Full Simulation study with ILD Detector

Analysis Overview

Analysis condition $\sqrt{s} = 250 \text{ GeV}$, L = 250 fb⁻¹, beam pol. P(e⁺,e⁻)=(+0.3, -0.8), Assume same cross section for both CP states $Z \rightarrow qq$ (Better precision on primary vertex, large rate)

Event generation
Parton generation: GRACE; Tau decays: TAUOLA

Analysis flow
 Tau jet reconstruction (select tau decays from the event)
 Rest of event = Z decay
 Signal event selection
 Categorization of tau decay mode
 Computation of acoplanarity angle

ZH associated production

Full simulation results

Three categories total: " $\pi\pi$ ", " $\pi\mu$ ", " πe " -> 6 statistically independent bins Perform pseudo-experiments to estimate the sensitivity

Pseudo-experiments

Log-likelihood ratio for CP-even and CP-odd hypotheses

 $t = -2\ln(L(\text{pseudo} \exp; \text{Odd})/L(\text{pseudo} \exp; \text{Even}))$

Summary

- Developed event generator using GRACE & TAUOLA for the study of Higgs CP mixing.
- Observable sensitive to the CP mixing angle (Acoplanarity angle) has been implemented and verified using generator-level information
 Performed analysis with full simulation using the ILD detector model
 CP-odd hypothesis can be excluded with C.L. >98% for pure CP-even state.

Prospects

- Estimate the sensitivity to the **CP mixing angle**
- Optimization of the tau decay categorization
- Utilization of other tau decay modes (e.g. rho meson, 3-prong)

Additional Slides

CP mixing and effect on benchmark models

PRL 111, 091801 (2013)

$$\mathcal{L}_{Y} = \bar{\psi}(\cos \alpha + i \sin \alpha \gamma_{5})\psi\phi$$
•As origin of EW Baryogenesis
•Constraints from EDM
↓
CP mixing: 10%
↓
$$\mathcal{L}_{Y} = \bar{\psi}(\cos \alpha + i \sin \alpha \gamma_{5})\psi\phi$$

BAU : Baryon asymmetry of universe

 $\cos\alpha:\sin\alpha=9:1$

mixing angle : $\alpha = 0.11$ rad = 6.3 deg.

分布に対する寄与はこの2乗で影響する。

$$N = (\cos^2 \alpha) N_{\text{even}} + (\sin^2 \alpha) N_{\text{odd}}$$

3.0

Sensitivity to Higgs CP

"target (theory)" is given assuming 10% CP-odd component

Collider	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	$\gamma\gamma$	$\mu^+\mu^-$	target
E (GeV)	$14,\!000$	$14,\!000$	250	350	500	1,000	126	126	(theory)
\mathcal{L} (fb ⁻¹)	300	$3,\!000$	250	350	500	1,000	250		
spin- 2_m^+	$\sim 10\sigma$	$\gg 10\sigma$	$>10\sigma$	$>10\sigma$	$>10\sigma$	$>10\sigma$			$>5\sigma$
VVH^{\dagger}	0.07	0.02	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$< 10^{-5}$
VVH^{\ddagger}	$4 \cdot 10^{-4}$	$1.2 \cdot 10^{-4}$	$7 \cdot 10^{-4}$	$1.1 \cdot 10^{-4}$	$4 \cdot 10^{-5}$	$8 \cdot 10^{-6}$		_	$< 10^{-5}$
VVH^{\diamond}	$7 \cdot 10^{-4}$	$1.3 \cdot 10^{-4}$	\checkmark	\checkmark	\checkmark	\checkmark	_	-	$< 10^{-5}$
ggH	0.50	0.16	_	_	_	_		—	$< 10^{-2}$
$\gamma\gamma H$		—	_	—	_	—	0.06	—	$< 10^{-2}$
$Z\gamma H$		\checkmark	_					_	$< 10^{-2}$
au au H	\checkmark	\checkmark	0.01	0.01	0.02	0.06	\checkmark	\checkmark	$< 10^{-2}$
ttH	\checkmark	\checkmark	_	_	0.29	0.08		—	$< 10^{-2}$
$\mu \mu H$	_	_	_	_	_	_	_	\checkmark	$< 10^{-2}$

[†] estimated in $H \to ZZ^*$ decay mode

[‡] estimated in $V^* \to HV$ production mode

 $^{\diamond}$ estimated in $V^*V^* \to H$ (VBF) production mode

Snowmass Energy Frontier Higgs Subgroup Report (Sept. 27 draft) <u>http://www.snowmass2013.org/tiki-download_file.php?fileId=329</u>

Higgs CP mixing angle: TAUOLA implementation

Define **CP mixing angle** α based on the general Yukawa interaction:

$$au(\cos lpha + i \sin lpha \gamma^5) \overline{ au} \phi$$

 $lpha = 0: ext{CP even}, \ lpha = \pi/2: ext{CP odd}$

In TAUOLA, the tau polarization vector (x,y,z) is generated according to the **density matrix** consistent with the parent particle

weight =
$$\sum_{i,j}^{0,1,2,3} \frac{\text{Pol. Vector}}{R_{ij} h_i^+ h_j^-}$$

Density Matrix
$$Density \text{ Matrix } R = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & \frac{(\beta \cos \phi)^2 - \sin \phi^2}{(\beta \cos \phi)^2 + \sin \phi^2} & -\frac{2\beta \cos \phi \sin \phi}{(\beta \cos \phi)^2 + \sin \phi^2} & 0\\ 0 & \frac{2\beta \cos \phi \sin \phi}{(\beta \cos \phi)^2 + \sin \phi^2} & \frac{(\beta \cos \phi)^2 - \sin \phi^2}{(\beta \cos \phi)^2 + \sin \phi^2} & 0\\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Observable for CP mixing angle

Triple odd correlation

$$\boldsymbol{\psi} = \arccos(\hat{\mathbf{p}} \cdot (\hat{\mathbf{v}}_{\perp}^{+} \times \hat{\mathbf{v}}_{\perp}^{-}))$$

For $\pi^- v$ and $\pi^+ v$ decays

Tau decay branching ratios

Table 1: Basis modes and fit values(%) for the 2012 fit to τ branching fraction data.

$e^-\overline{ u}_e u_ au$	17.83 ± 0.04
$\mu^-\overline{ u}_\mu u_ au$	17.41 ± 0.04
$\pi^- u_{ au}$	10.83 ± 0.06
$\pi^-\pi^0 u_ au$	25.52 ± 0.09
$\pi^{-}2\pi^{0}\nu_{\tau}$ (ex. K^{0})	9.30 ± 0.11
$\pi^{-}3\pi^{0}\nu_{\tau}$ (ex. K^{0})	1.05 ± 0.07
$h^{-}4\pi^{0}\nu_{\tau}$ (ex. K^{0}, η)	0.11 ± 0.04
$K^- u_{ au}$	0.700 ± 0.010
$K^-\pi^0 u_ au$	0.429 ± 0.015
$K^{-}2\pi^{0}\nu_{\tau}$ (ex. K^{0})	0.065 ± 0.023
$K^{-}3\pi^{0}\nu_{\tau}$ (ex. K^{0}, η)	0.048 ± 0.022
$\pi^-\overline{K}^0 u_ au$	0.84 ± 0.04
$\pi^-\overline{K}^0\pi^0 u_ au$	0.40 ± 0.04
$\pi^- K^0_S K^0_S u_ au$	0.024 ± 0.005
$\pi^- K^0_S K^0_L u_ au$	0.12 ± 0.04
$K^- K^0 u_{ au}$	0.159 ± 0.016
$K^- K^0 \pi^0 u_ au$	0.159 ± 0.020
$\pi^-\pi^+\pi^-\nu_{\tau}$ (ex. K^0,ω)	8.99 ± 0.06
$\pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}$ (ex. K^{0},ω)	2.70 ± 0.08

τ⁻→π⁻ν, τ⁺→μ⁺ (e+)νν

Two neutrinos: spin correlation dilutedThe distribution is flipped for every lepton

 $\tau^- \rightarrow \pi^- \nu, \tau^+ \rightarrow \pi^+ \nu$

1.2% of all H->tautau events

π⁻ ν**と** π⁺ π⁺ π⁻ νν (3 prong)

Reconstruction the 3-prong decay vertex should be investigated. Question: How does it compare with the impact parameter method?

Tau decay mode categorization

category	# of PFOs	ECAL/(ECAL+HCAL)	Track P/(ECAL+HCAL)
ππ	< 2	< 0.9	> 0.7
πе	< 3	> 0.9	
πμ	< 3	< 0.9	< 0.7

Acoplanarity angle: three categories

* Distribution is flipped for $\pi\pi$ category

Acoplanarity angle: three categories

In case of removing cut about the number of PFOs,

Signal(Even) + BKG

Signal(Odd) + BKG

3

BKG component

2.5

Test statistics

i: bin number. $\nu_i(H)$: Expected number in bin i assuming hypothesis H. n_i : Number of event in bin i, randomly generated in pseudo-experiment.

Likelihood is ,

$$L(\{n_i\}; H) = \prod_i \frac{\nu_i(H)}{n_i!} e^{-\nu_i}$$
$$\ln L(\{n_i\}; H) = \sum_i \{n_i \ln \nu_i(H) - \nu_i - \ln(n_i!)\}$$

Likelihood-ratio is,

$$t = -2\ln\left(\frac{L(\{n_i\}; \text{Odd})}{L(\{n_i\}; \text{Even})}\right)$$
$$= -2\sum_i \left(n_i \ln \frac{\nu_i(\text{Odd})}{\nu_i(\text{Even})} - (\nu_i(\text{Odd}) - \nu_i(\text{Even}))\right)$$