

Study of Top Quark Pair Production near the Threshold at the ILC

14th Nov. 2013 @Univ. of Tokyo Tomohiro Horiguchi

A. Ishikawa, K. Fujii¹, T. Suehara², Y. Kiyo³, Y. Sumino, H. Yamamoto Tohoku Univ. , ¹KEK, ²Kyushu Univ. ³Juntendo Univ.

LCWS13 in Tokyo

1

Our Target

> Top quark mass(\mathbf{m}_t)

- $-\overline{\text{MS}}$ scheme ($\mathbf{m}_t^{\overline{\text{MS}}}$)
- Potential subtraction scheme**(m_t^{PS})

> Decay width(Γ_t)

- anomalous coupling
- exotic decay

> Top quark yukawa coupling(y_t)

- > Strong coupling constant α_s
- QCD wave function of top pair system

Vacuum stability JHEP **1210**, 140 (2012) ** Potential subtraction scheme arXiv:hep-ph/9804241

Measuremet of m_t , Γ_t and y_t

Measuring the total cross section precisely and fitting it, fundamental parameters are determined !!

Simulation & Reconstruction

Simulation

Top quark mass	174 GeV
Center of mass energy (Е _{СМ}) (<u>threshold scan</u>)	<u> 341 - 350GeV (every 1 GeV, 10 points)</u>
<u>Polarization</u>	$p(e^+,e^-) = (-30\%,+80\%),(+30\%,-80\%)$ (In this talk, I call them "Right" and "Left")
Integrated Luminosity	5 fb ⁻¹ (each E _{CM} & pol, total 100fb ⁻¹) <u> ※Running schedule around 350GeV is not determined.</u>
Event Generation	Physsim (LO ,no higgs exchange/on QCD enhancement, on ISR/ beamstralung/beam energy spread)
Simulation	ILD_01_v05 (DBD ver.)

Full simulation with the ILD detector is performed.

Signal and Background

Top Quark Reconstruction (6-Jet & 4-Jet)

Reconstruction method	6-Jet	4-Jet
Suppressing the background overlay using anti-k _T algor	rithm	
Finding the Isolated Lepton(<mark>l_{iso})</mark>	# of l_{iso} = 0	# of l_{iso} = 1
Jet clustering using Durham algorithm	Cluster to <mark>6jets</mark>	Cluster to 4jets
2 b-likeness Jets were found usin <mark>g LCFIPlus</mark>	-	-
Reconstruction of two W bosons	$q_1 + q_2 \& q_3 + q_4$	$q_1 + q_2 \& l_{iso} + v$
Reconstruction of two top quarks	-	-
Minimizing the χ^2	1	2
$ \begin{array}{c} \textcircled{1} \\ \chi_{6-\text{Jet}}^{2} = \frac{(m_{3j^{\text{a}}\text{reco.}} - m_{t})^{2}}{\sigma_{t}^{2}} + \frac{(m_{3j^{\text{b}}\text{reco.}} - m_{t})^{2}}{\sigma_{t}^{2}} + \frac{(m_{2j^{\text{a}}\text{reco.}} - m_{w})^{2}}{\sigma_{w}^{2}} + \frac{(m_{2j^{\text{b}}\text{reco.}} - m_{w})^{2}}{\sigma_{w}^{2}} \\ \textcircled{2} \\ \chi_{4-\text{Jet}}^{2} = \frac{(m_{3j\text{reco.}} - m_{t})^{2}}{\sigma_{t}^{2}} + \frac{(m_{j \nu\text{reco.}} - m_{t})^{2}}{\sigma_{t}^{2}} + \frac{(m_{2j\text{reco.}} - m_{w})^{2}}{\sigma_{w}^{2}} \\ \end{array} $	$\begin{pmatrix} 100\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	<i>l_{iso}</i> finding 6jets 4jets 0 60 80 10

LCVV313 III IUKYU

Event selection

Event Selection

Selection Table 6-Jet @350GeV

Left	tt6j	tt4j	tt2j	ww	zz	ZH	6f	S _{6i}
Generated	1643	1583	381	32664	3004	694	65408	8.2
# of lepton = 0	1591	358	18	32076	2956	638	35005	5.9
btag > 0.1 × 2	1513	340	17	3580	1395	472	6056	13.1
Thrust<0.84	1491	320	14	407	454	392	716	24.2
Evis>300 GeV	1475	114	0	205	294	295	58	29.8
missPt<38GeV	1469	58	0	204	292	292	56	30.2
m,>100GeV × 2	1462	56	0	173	245	246	45	31
y45> 0.0015 y56 >0.0007	1411	36	0	65	67	76	33	34.3
# of pfos<86	1398	21	0	11	67	70	27	34.6
	1000	51	0	41	57	70	52	
Right	tt6i	tt4i	tt2i	41 WW	77	70 7H	6f	ς
Right	tt6j	tt4j	tt2j	WW	ZZ	ZH	6f	S _{6j}
Right Generated	tt6j 786	51 tt4j 757	tt2j	2162	ZZ 1386	ZH 468	6f	S_{6j} 10.4
Right Generated # of lepton = 0	tt6j 786 760	51 tt4j 757 171	tt2j 182	2162 2122	ZZ 1386 1365	2H 468 431	6f 4379 2290	S_{6j} 10.4 9
Right Generated # of lepton = 0 btag > 0.065 × 2	tt6j 786 760 745	31 tt4j 757 171 167	tt2j 182 8 8	2162 2122 537	ZZ 1386 1365 772	2H 468 431 343	6f 4379 2290 650	S_{6j} 10.4 9 13.1
RightGenerated# of lepton = 0btag > 0.065 × 2Thrust<0.84	tt6j 786 760 745 734	tt4j 757 171 167 157	tt2j 182 8 8 6	2162 2122 537 64	ZZ 1386 1365 772 204	70 ZH 468 431 343 284	6f 4379 2290 650 89	S_{6j} 10.4 9 13.1 18.7
RightGenerated# of lepton = 0btag > 0.065 × 2Thrust<0.84	tt6j 786 760 745 734 725	31 tt4j 757 171 167 157 55	tt2j 182 8 8 6 0	2162 2122 537 64 32	ZZ 1386 1365 772 204 125	70 ZH 468 431 343 284 213	6f 4379 2290 650 89 13	S _{6j} 10.4 9 13.1 18.7 21.3
RightGenerated# of lepton = 0btag > 0.065 × 2Thrust<0.84	tt6j 786 760 745 734 725 722	31 tt4j 757 171 167 157 55 28	tt2j 182 8 8 6 0 0	2162 2122 2122 537 64 32 32	27 27 1386 1365 772 204 125 124	70 ZH 468 431 343 284 213 211	6f 4379 2290 650 89 13 12	S _{6j} 10.4 9 13.1 18.7 21.3 21.5
RightGenerated# of lepton = 0btag > 0.065 × 2Thrust<0.84	tt6j 786 760 745 734 725 722 719	31 tt4j 757 171 167 157 55 28 27	tt2j 182 8 8 6 0 0 0 0	2162 2122 2122 537 64 32 32 32 27	37 ZZ 1386 1365 772 204 125 124 105	70 ZH 468 431 343 284 213 211 178	6f 4379 2290 650 89 13 12 11	S _{6j} 10.4 9 13.1 18.7 21.3 21.5 22
RightGenerated# of lepton = 0btag > 0.065 × 2Thrust<0.84	tt6j 786 760 745 734 725 722 719 693	31 tt4j 757 171 167 157 28 27 18	tt2j 182 8 8 6 0 0 0 0	 WW 2162 2122 537 64 32 32 27 10 	37 ZZ 1386 1365 772 204 125 124 105 29	70 ZH 468 431 343 284 213 211 178 57	6f 4379 2290 650 89 13 12 11	S _{6j} 10.4 9 13.1 18.7 21.3 21.5 22 24.2

$$\int \mathcal{L}(t)dt = 5(\text{fb}^{-1})$$

$$N_{Sig}$$

 $S = \frac{1}{\sqrt{N_{Sig} + N_{BG.}}}$

Statistical error

$$\frac{\delta \sigma_{t\bar{t}}}{\sigma}_{\text{Left}} = 2.9\%$$
$$\frac{\delta \sigma_{t\bar{t}}}{\sigma}_{\text{Right}} = 4.1\%$$

6f: 6 fermion final state except ttbar

LCWS13 in Tokyo

Selection Table 4-Jet @350GeV

Left	tt4j	tt6j	tt2j	ww	ZZ	ZH	6f+4f	S _{4i}
Generated	1583	1643	381	32664	3004	694	65408	7.9
# of lepton = 1	1203	67	112	742	59	51	30003	6.7
btag > 0.1 × 2	1122	63	106	55	16	17	1330	21.6
Thrust < 0.845	1092	63	92	10	7	14	201	28.4
230 < Evis < 360 GeV	1048	45	50	8	6	12	77	29.6
missPt < 38 GeV	1027	16	49	1	2	8	75	29.9
m _t > 100 GeV × 2	1011	10	40	0	1	7	45	30.2
# of pfos > 50								
# of pfos < 160	1006	9	31	0	1	6	30	30.5
· · · · · · · · · · · · · · · · · · ·		-		-				
Right	tt4i	tt6i	tt2i	ww	77	ZH	6f+4f	S
Right	tt4j	tt6j	tt2j	ww	ZZ	ZH	6f+4f	S _{4j}
Right Generated	tt4j 757	tt6j 786	tt2j 182	WW 2162	ZZ 1386	ZH 468	6f+4f 4379	Տ_{4j} 10
Right Generated # of lepton = 1	tt4j 757 576	tt6j 786 31	tt2j 182 53	WW 2162 50	ZZ 1386 27	ZH 468 35	6f+4f 4379 2018	S_{4j} 10 10.9
Right Generated # of lepton = 1 btag > 0.065 × 2	tt4j 757 576 554	tt6j 786 31 30	tt2j 182 53 51	WW 2162 50 7	ZZ 1386 27 9	ZH 468 35 14	6f+4f 4379 2018 161	S_{4j} 10 10.9 19.2
RightGenerated# of lepton = 1btag > 0.065 × 2Thrust < 0.845	tt4j 757 576 554 539	tt6j 786 31 30 30	tt2j 182 53 51 45	WW 2162 50 7 1	ZZ 1386 27 9 3	ZH 468 35 14 12	6f+4f 4379 2018 161 30	S_{4j} 10 10.9 19.2 20.9
RightGenerated# of lepton = 1btag > 0.065 × 2Thrust < 0.845230 < Evis < 360 GeV	tt4j 757 576 554 539 517	tt6j 786 31 30 30 22	tt2j 182 53 51 45 25	WW 2162 50 7 1 1	ZZ 1386 27 9 3 3	ZH 468 35 14 12 10	6f+4f 4379 2018 161 30 12	S_{4j} 10 10.9 19.2 20.9 21.2
RightGenerated# of lepton = 1btag > 0.065 × 2Thrust < 0.845230 < Evis < 360 GeVmissPt < 38 GeV	tt4j 757 576 554 539 517 506	tt6j 786 31 30 30 22 7	tt2j 182 53 51 45 25 24	WW 2162 50 7 1 1 1 0	ZZ 1386 27 9 3 3 3 1	ZH 468 35 14 12 10 7	6f+4f 4379 2018 161 30 12 12	S _{4j} 10 10.9 19.2 20.9 21.2 21.4
Right Generated # of lepton = 1 btag > 0.065 × 2 Thrust < 0.845 230 < Evis < 360 GeV missPt < 38 GeV m _t > 100 GeV × 2	tt4j 757 576 554 539 517 506 498	tt6j 786 31 30 30 22 7 4	tt2j 182 53 51 45 25 24 20	WW 2162 50 7 1 1 1 0 0 0	ZZ 1386 277 9 3 3 3 1 1 0	ZH 468 35 14 12 10 7 6	6f+4f 4379 2018 161 30 12 12 8	S _{4j} 10 10.9 19.2 20.9 21.2 21.4 21.5
Right Generated # of lepton = 1 btag > 0.065 × 2 Thrust < 0.845 230 < Evis < 360 GeV missPt < 38 GeV m _t > 100 GeV × 2 # of pfos > 50	tt4j 757 576 554 539 517 506 498	tt6j 786 31 30 30 22 7 4	tt2j 182 53 51 45 25 24 20	WW 2162 50 7 1 1 1 0 0 0	ZZ 1386 277 9 3 3 3 1 1 0	ZH 468 35 14 12 10 7 6	6f+4f 4379 2018 161 30 12 12 8	S _{4j} 10 10.9 19.2 20.9 21.2 21.4 21.5

$$\int \mathcal{L}(t)dt = 5(\text{fb}^{-1})$$
$$S = \frac{N_{Sig}}{\sqrt{N_{Sig} + N_{BG.}}}$$

Statistical error

$$\frac{\delta \sigma_{t\bar{t}}}{\sigma}_{\text{Left}} = 3.3\%$$
$$\frac{\delta \sigma_{t\bar{t}}}{\sigma}_{\text{Right}} = 4.6\%$$

4f: the total # of events semi-leptonic decay of ZZ, WW 6f: 6 fermion final state except ttbar

LCWS13 in Tokyo

The Statistical Error of Top Quark Yukawa Coupling

Using the significances of the all E_{CM} (341 – 350 GeV) for each polarization, the statistical error of y_t is estimated.

Measurement of Top Quark "Mass" and "Width"

Fit - convolution -

OWe must consider "Beam effects" around threshold.

Fit -toyMC

Template of theoretical cross section:

- Floating m_t^{PS} , Γ_t and E_{CM}
- Fixed α_s and y_t
- The set center value $(m_t^{PS}, \Gamma_t) = (172.000, 1.400)$

Fitting with NNLO convoluted theoretical cross section using Toy-MC method:

- Using the efficiency of LO analysis, experimental cross section was scaled to NNLO calculation.
- Its random number depend on Poisson distribution was generated.
- 2-D fitting (m_t^{PS}, Γ_t) by interpolating and minimizing the cross section.

Fit -Result-

Stat. Error	6-J	et	4-Jet		
(MeV)	m _t ^{PS}	Γ _t	m _t ^{PS}	Γ _t	
Left(50fb ⁻¹)	28	40	33	48	
Right(50fb⁻¹)	42	63	48	67	
Left (50fb ⁻¹) + Right(50fb ⁻¹)	23	34	27	39	

17

Summary and Plan

Summary

- We have estimated the <u>statistical error</u> of y_t , m_t and Γ_t using 6-Jet and 4-Jet final state for two polarization at the ILC.
- $-5 \text{ fb}^{-1} \times 20 \text{ points}, 100 \text{ fb}^{-1}$

✓ (10 E_{CM} × 2 polarization states, Left and Right)

Δy _t /y _t	4.4 %
m _t ^{PS}	172.001± 0.018 (GeV)
$m_t^{\overline{MS}}$	163.800± 0.017 (GeV)
Γ _t	1.399± 0.026 (GeV)

≻ Plan

- Start the QCD wave function analysis, A_{FB}