Beam Dynamic Effects of Experimenal Solenoid

Yngve Inntjore Levinsen, Rogelio Tomás Garcia Thanks to A. Latina, H. Garcia, B. Dalena, J. Snuverink, M. Modena, A. Bartalesi, H. Gerwig

Linac Workshop 2013

14. November, 2013

- Reminder ECFA talks
- Studies for CLIC
- Preliminary studies for ILC

FF Magnet Multipoles

- All FF magnets in CLIC checked + ILC QF1.
- Compared to QD0 prototype, only b_3 and a_3 above margins.
- For ILC, higher orders play a more important role.
- URL

Solenoid Studies

- Integration into PLACET finished.
- New solenoid field map produce similar results as before.
- Preliminary tuning studies with anti-solenoid presented.
- URL

Field Map

5 / 26

Field Map

Field Map

- FEM simulation including a realistic solenoid design.
- Anti-solenoid designed to minimise field inside QD0/protect the magnet.
- The QD0 itself is not included in these FEM simulations.
- Courtesy H. Gerwig.

Main Effects (w/ anti-solenoid)

Deterministic Simulation

Deterministic Simulation

	w/o anti-solenoid	w anti-solenoid
	[%]	[%]
Relative loss	5	4

- Experimental solenoid cause about 4 % luminosity loss due to ISR.
- About 1 % additional losses w/o anti-solenoid.
- Newer FEM simulations including the QD0 (A. Bartalesi) show similar results in deterministic simulation (see ECFA talk).

Tuning Simulation

Should be able to end up with **same luminosity** as deterministic simulations if we find the ideal correction?

- 5 sextupoles in BDS -> 5 horizontal and 5 vertical knobs.
- QD0 vertical displacement provide one additional knob.
- See e.g. PRSTAB 15, 051006 for details about these knobs.
- Algorithm: Iterate over knobs and do a parabola fit for each.

Tuning Simulation

Should be able to end up with **same luminosity** as deterministic simulations if we find the ideal correction?

- 5 sextupoles in BDS -> 5 horizontal and 5 vertical knobs.
- QD0 vertical displacement provide one additional knob.
- See e.g. PRSTAB 15, 051006 for details about these knobs.
- Algorithm: Iterate over knobs and do a parabola fit for each.

First tuning results

- Around 90 % optimum achieved (compared to 96 %).
- Map w/o anti-solenoid very hard to correct, probably due to strong field inside the QD0.

Additional tuning knobs

Five additional knobs

- We already used vertical movement of the QD0. Added horizontal movement, and roll.
- Added the same three knobs for QF1.

Additional tuning knobs

Additional tuning knobs

Five additional knobs

- We already used vertical movement of the QD0. Added horizontal movement, and roll.
- Added the same three knobs for QF1.
- \bullet Optimal luminosity increased from 90 % to around 94-95 %
- $\bullet\,$ Modulating sextupole strengths as well might get us closer to the 96 %..

Summary CLIC tuning

- Deterministic simulation suggest around 4-5 % luminosity loss from ISR for the SiD design.
- Full tuning study including QD0/QF1 knobs obtain quite consistent results within error-bars.
- Nonlinear knobs might be needed to fully perfectly correct the optics.

- The SiD design for CLIC is not too far away from the ILC SiD design.
- $\bullet\,$ As first iteration, using SiD field map w/o anti-solenoid to study the ILC lattice.
- Expect lower losses from deterministic simulation, more trouble tuning (stronger optical distortions).
- The SC QD0 should give a good amount of shielding itself -> results expected to be overly pessimistic.
- References for ILC solenoid effect: Seryi et al., PRSTAB, 2005 [1, 2], PhD by R. Versteegen, 2011 [3].

Vertical Dispersion

y-x' coupling

Calculating new knobs

- For each sextupole, vary with $\pm \Delta x$ and track the beam.
- Calculate the covariance matrix, using the variation of the variables *E*, *x*, *y*, *xp*, *yp*.
- Use SVD decomposition to calculate orthogonal knobs.

- $\bullet\,$ Deterministic simulation showed only 1 % luminosity loss from ISR.
- Tuning the optical part expected to be more challenging.

First try at tuning

de

Tuning - Improvements

First, reduce the absolute strength of the solenoid a factor 20 to see if the algorithm/knobs work as expected..

First, reduce the absolute strength of the solenoid a factor 20 to see if the algorithm/knobs work as expected..

Give an idea of how much impact increasing the crossing angle will have $\underline{o}n$ the tuning performance.

Order of knobs could improve things? Going twice over the QD0/QF1 vertical and roll knobs.

Genetic Algorithm

- Order of knobs important -> non-linear optimisation.
- Start with *n* random seeds of the variables to optimise.

Genetic Algorithm

- Order of knobs important -> non-linear optimisation.
- Start with *n* random seeds of the variables to optimise.
- In each generation
 - Certain probability for mutation.
 - Certain probability for crossover between two seeds.
 - Always carry over the best seed.

Genetic Algorithm

- Order of knobs important -> non-linear optimisation.
- Start with *n* random seeds of the variables to optimise.
- In each generation
 - Certain probability for mutation.
 - Certain probability for crossover between two seeds.
 - Always carry over the best seed.
- Typically want 500 pop x 200 generations. Slow evaluation for us -> max \sim 1000 iterations.
- \bullet Results of \sim 100 GA simulations with varying mut./xover prob. is 25-26 % L/L_0.

Genetic Algorithm

- Order of knobs important -> non-linear optimisation.
- Start with *n* random seeds of the variables to optimise.
- In each generation
 - Certain probability for mutation.
 - Certain probability for crossover between two seeds.
 - Always carry over the best seed.
- Typically want 500 pop x 200 generations. Slow evaluation for us -> max \sim 1000 iterations.
- \bullet Results of \sim 100 GA simulations with varying mut./xover prob. is 25-26 % L/L_0.

The Simplex algorithm could be an alternative approach.

Tuning - with anti-solenoid

- The SC QD0 should provide significant shielding not included in these simulations.
 - And comprises an anti-solenoid we learned today.
- The anti-solenoid was found to remove \sim 90 % of the optical distortions by Versteegen, similar has been found for CLIC.

Tuning - with anti-solenoid

Using the same knob order which gave 25 $\%~L/L_0$ before.

Summary ILC tuning

- About 99 % should be recovered if we manage perfect compensation.
- Optical distortions stronger than for CLIC.
- Preliminary, about 25 % recovery without anti-solenoid, 75 % with anti-solenoid.
- Anti-DID and shielding effect of QD0 not included.

Y. Nosochkov and Andrei Seryi.

Compensation of detector solenoid effects on the beam size in a linear collider.

Phys. Rev. ST Accel. Beams, 8:021001, Feb 2005.

B. Parker and Andrei Seryi.
Compensation of the effects of a detector solenoid on the vertical beam orbit in a linear collider.
Phys. Rev. ST Accel. Beams, 8:041001, Apr 2005.

Reine Versteegen.

Conception et optimisation de la région d'interaction d'un collisionneur linéaire électron-positon. PhD thesis, 2011.

