Status of magnets R&D for CLIC BDS

M. Modena CERN

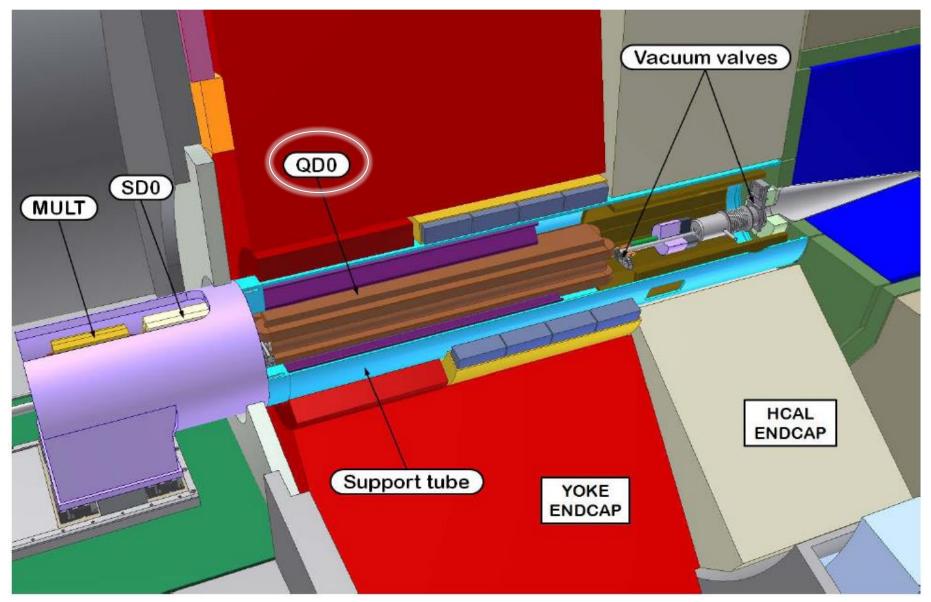
Acknowledgments:

CERN CLIC Magnets Studies Team: A. Aloev, A. Bartalesi, E. Solodko, P. Thonet, A. Vorozhtsov

International Workshop on Future Linear Colliders

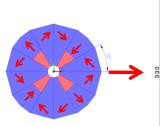
LCWS13 11-15 November 2013, The University of Tokyo

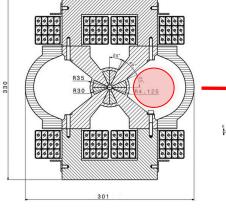
- 1) CLIC QD0 status
- 2) Anti-solenoid studies
- 3) CLIC SD0 status

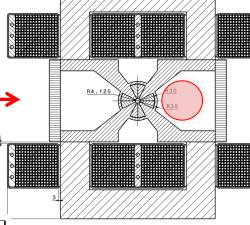


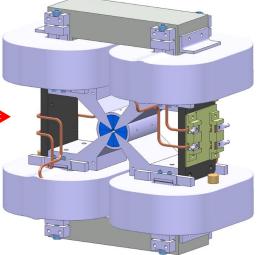
- 1) CLIC QD0 status
- 2) Anti-solenoid studies
- 3) CLIC SD0 status

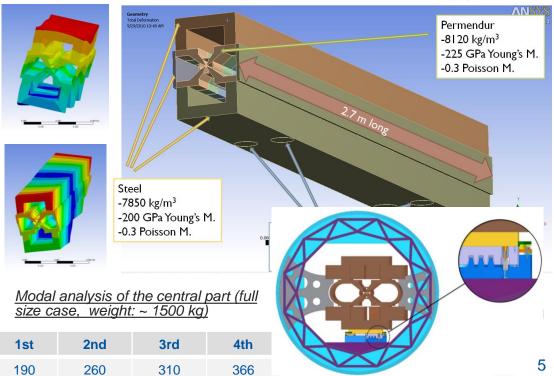
CLIC QD0 layout&integration






CLIC QDO (3 TeV; L*=3.5 m) typical layout

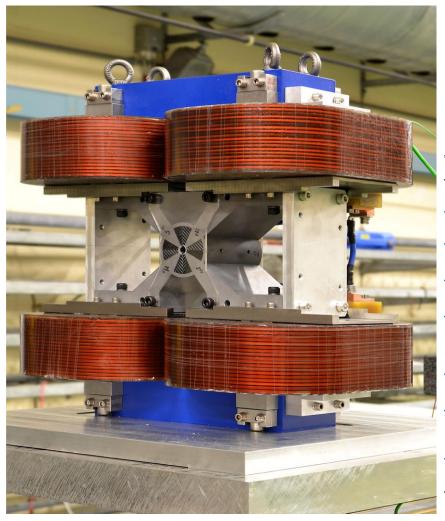




CLIC QD0 Main		Prototype (Iron	Nominal magnet
Parameters		yoke length of	(Iron yoke length
		100 mm)	of ~ 2500 mm)
Max. Gradient	[T/m]	552	615
(computed)			
Magnet aperture	[mm]	8.25	8.25
Tunability		32÷100%	32÷100%
GEOMETRY			
Total length	[mm]	273	2600
Width	[mm]	468	518
Height	[mm]	424	424
Total mass	kg	~ 200	~2700
COILS			
Conductor size	[mm]	4x4	4x4
N. of turns		324 (18x18)	324 (18x18)
Average turn length	[m]	0.586	5.786
Total coils (4) mass	[kg]	107.2	1060.8
ELECT.PARAMETERS			
Ampereturns per pole	[A]	5000	5000
Current	[A]	15.4	15.4
Current density	[A/mm ²]	1	1
Total resistance	[mOhm]	896	8838
Total voltage	[V]	13.8	136.4
Total power	[W]	213	2150

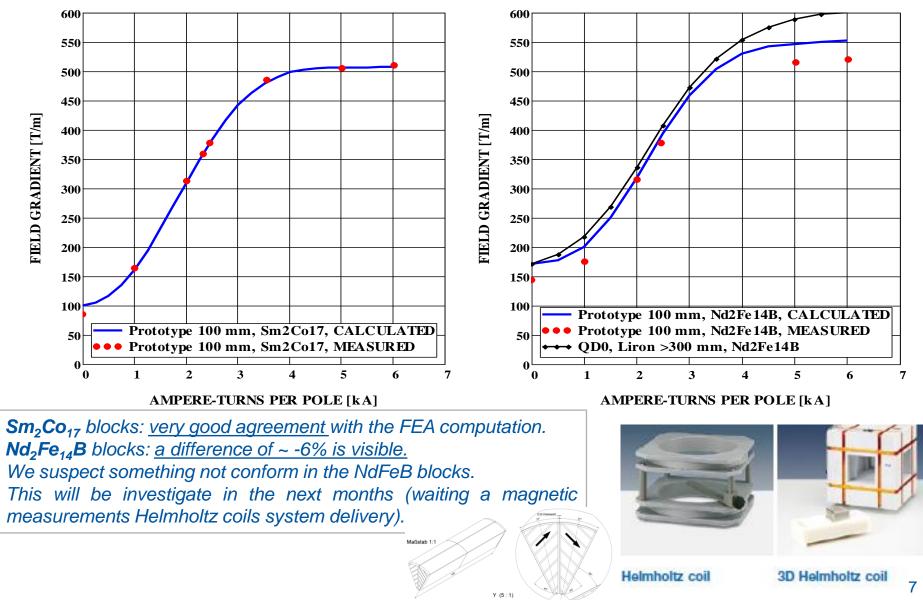
Michele Modena, CERN

RN "CLIC BDS R&D Status", LCWS13, 11-15 November 2013, Tokyo

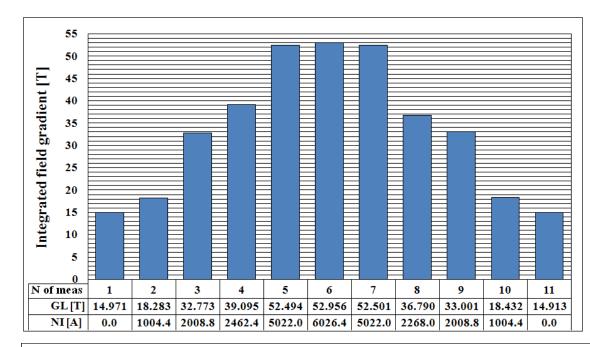

Mode

Freq [Hz]

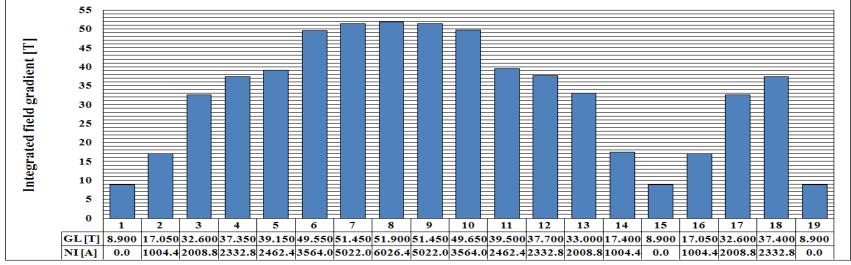
- A short QD0 prototype (for CLiC 3TeV layout) was built at CERN in 2010-2011.
- Objective: validate the Hybrid Magnet design proposed:
 PM blocks Permendur core structure coils for tunability (low current density).
- **Two** campaign of measurements were done in 2012 in two different configuration:


- QD0 equipped with Nd₂Fe₁₄B_blocks (measured in January 2012)
- QD0 equipped with Sm₂Co₁₇ blocks (measured in August 2012).
- "Vibrating Wire" MM method was used (the only available due to the small magnet radius).

Main Parameter	Value
Required field gradient G	575 T/m
Prototype gradient expected	547(NdFeB) ; 503(SmCo) T/m
Magnetic length (full size QD0)	2.73 m
Magnet aperture (required for beam)	7.6 mm
Magnet bore diameter (assuming a 0.30 mm vacuum pipe thickness)	8.25 mm
Good field region(GFR) radius	1 mm
Integrated field gradient error inside GFR	< 0.1%
Gradient adjustment required	+0 to -20%



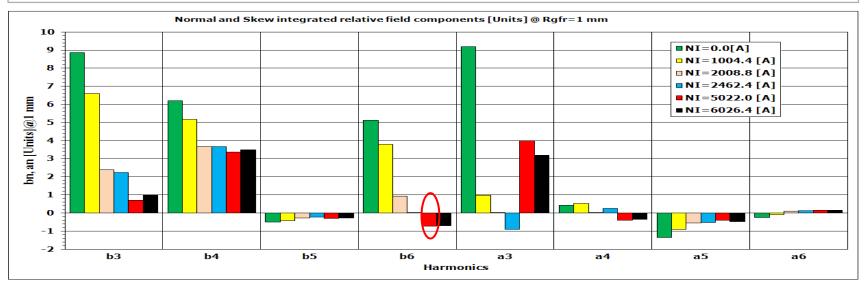
COMPUTED Gradient (blue curves) and MEASURED Gradient (red dots) (extrapolated from the INTEGRATED GRADIENT effectively measured), with **Sm**₂**Co**₁₇ blocks (on the left: 504 T/m) and **Nd**₂**Fe**₁₄**B** blocks (on the right : 514 T/m).

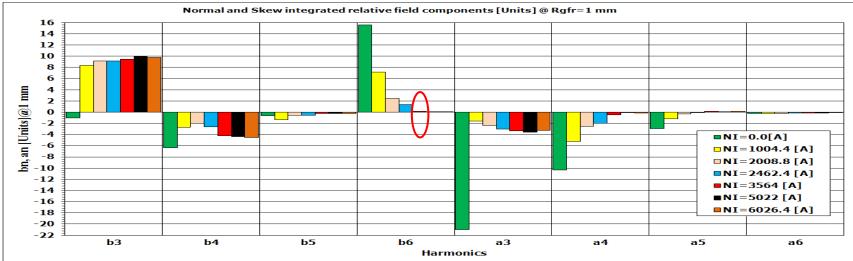


Diagrams show the INTEGRATED Gradient measured versus the magnet powering (NI: total ampereturns) for both QD0 configurations; upper graph Nd₂Fe₁₄B; lower: Sm₂Co₁₇.

To be noted:

- the absence of PM
- demagnetization effects,
- no hysteresis effects visible





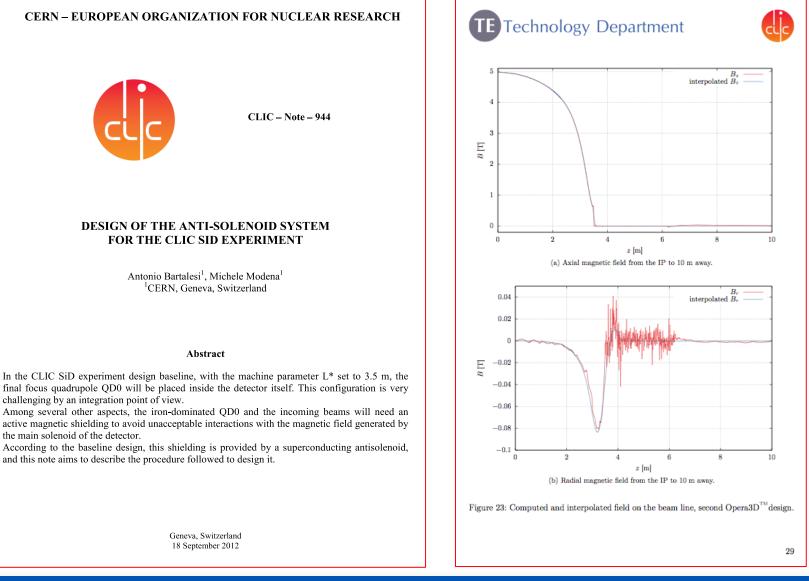
Prototype FIELD QUALITY (given as magnetic harmonic content, multipoles) versus the magnet powering: Nd₂Fe₁₄B (upper graph), Sm₂Co₁₇ (lover graph).

NOTE: the first "permitted" mutipole is b6: at NI=5000A we compute b6=1.4 units (NdFeB) and b6=0.7 units (SmCo).

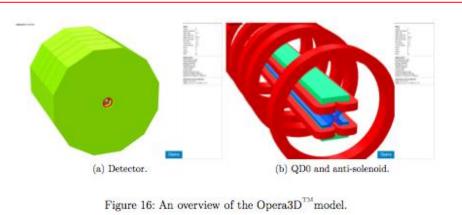
Michele Modena, CERN

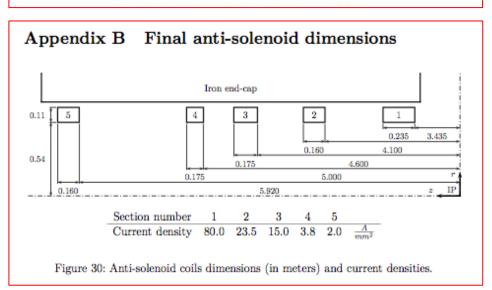
"CLIC BDS R&D Status", LCWS13, 11-15 November 2013, Tokyo

- 1) CLIC QD0 status
- 1) Anti-solenoid studies
- 2) CLIC SD0 status

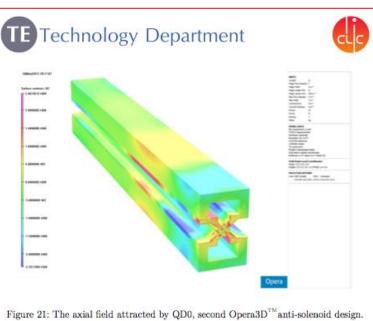


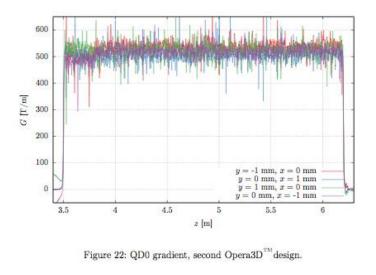
CLIC Anti-solenoid


The anti-solenoid study was finalized in 2012.


(See **CLIC Note 944** and paper: A. Bartalesi, M. Modena: "3D FEA Computation of the CLIC Machine Detector Interface Magnets", Proceeding of IPAC-2012, pag.1936)

CLIC Anti-solenoid

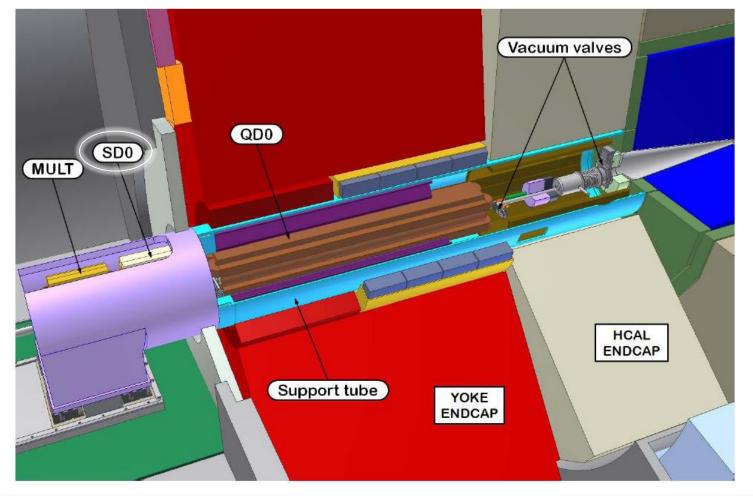


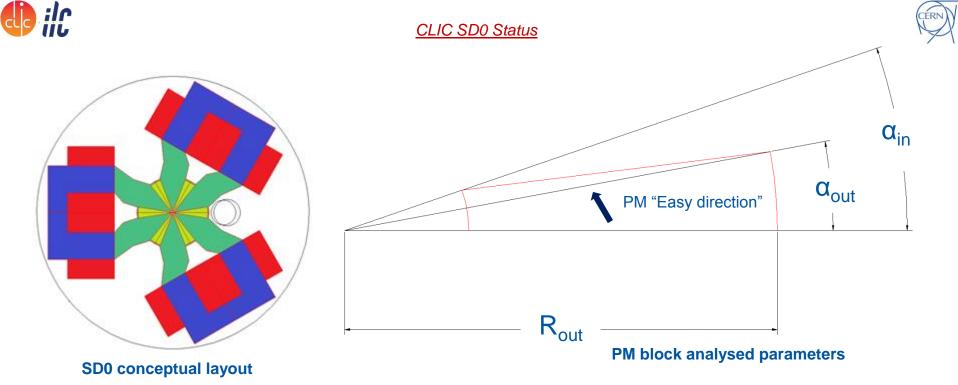

FORCES:

-The most relevant is the axial force is: Fz of 7.0 · 10⁶ N acting on the first coil of the anti-solenoid, pushing it away from the IP.

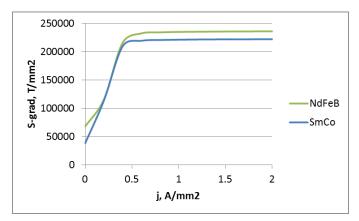
-The magnetic forces acting on QD0 are estimated as: $Fz \simeq -5.7 kN$; $Fx \simeq 8.3 kN$; $Ty \simeq 5.6 \cdot 10^3 Nm$.

28 12

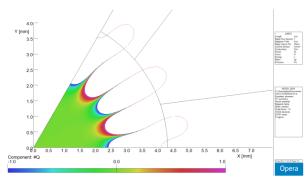

- 1) CLIC QD0 status
- 2) Anti-solenoid studies
- 3) CLIC SD0 status

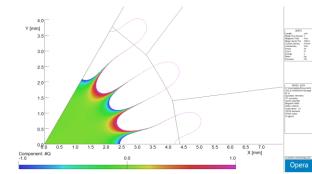


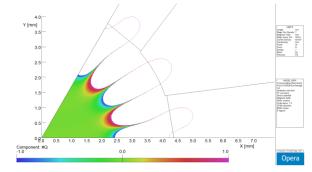
- **SDO** is also considered a BDS <u>critical magnet</u> as it is requires the stronger as possible gradient.
- It is the last magnet of the BDS placed on the tunnel, just at the border with the experimental Hall
- Being much shorter and not placed inside the Detector, this magnet has less tight geometric boundary conditions.

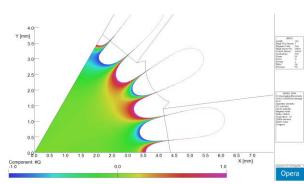

Parameter	Value
Inner radius	4.3 mm
Nom. Sext. Gradient	219403 T/m2
Magnetic Length	Lm: 0.248 m

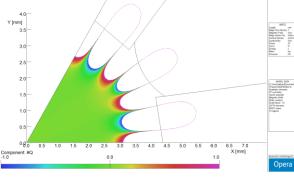
Optimization process provides these values : $\alpha_{in} = 18.9^{\circ}$ $\alpha_{out} = 8.4^{\circ}$ $R_{out} = 40$ mm


	NdFeB	SmCo				
R _{out} mm	S-gradient, T	⁷ /m ²				
20	217 271	200 368				
40	234 438	220 891				
70	235 926	222 188				
90	236 000	222 188				


Magnet powering curve




Opt.1 S-grad 222020 T/m²


Opt.2 S-grad 220349 T/m²

Opt.3 S-grad 221247 T/m²

Opt.4 S-grad 215785 T/m²

Opt.5 S-grad 216013 T/m²

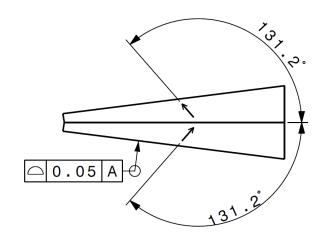
4 2 0 bn, units (at 2/3 of aperture) 13 14 16 17 9 10 11 12 15 18 19 20 21 -2 -4 -6 -8 -10 -12 -14 -16 -18 harmonic number

■ Opt.1 ■ Opt.2 ■ Opt.3 ■ Opt.4 ■ Opt.5

	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Opt.1	0.02338			-0.25272			0.03797			-12.5842			0.05568			1.66380165
Opt.2	0.01156			0.32237			-9.02E-03			-15.6347			-0.06368			2.07597517
Opt.3	0.04744			0.15097			5.19E-03			-4.49391			-0.08142			0.34706331
Opt. 4	8.64E-03			-0.25438			0.04409			1.04E-04			0.04693			0.03784612
Opt.5	9.02E-03			-0.01351			5.38E-03			0.09589			-2.20E-04			0.15660942

Michele Modena, CERN

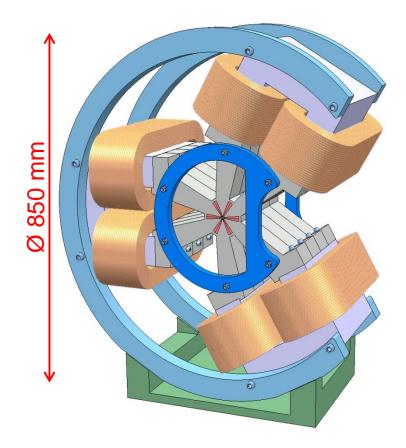
"CLIC BDS R&D Status", LCWS13, 11-15 November 2013, Tokyo



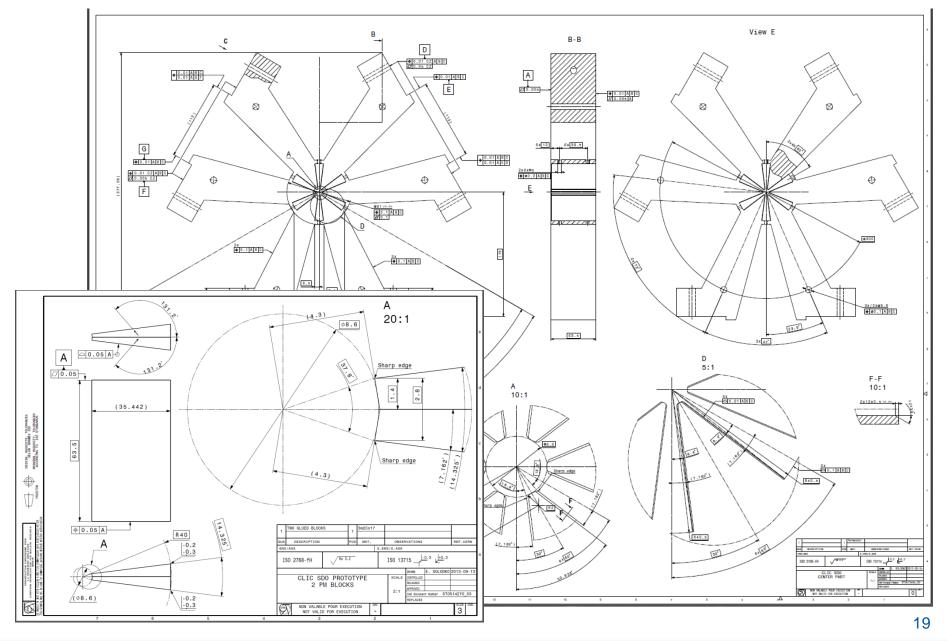
A sensitivity study of the the field quality versus error in the magnetization angle was also initiated:

The table below shows the appearance of undesirable multipole components when an error of 1 degree in the magnetization angle appears in ONE block.

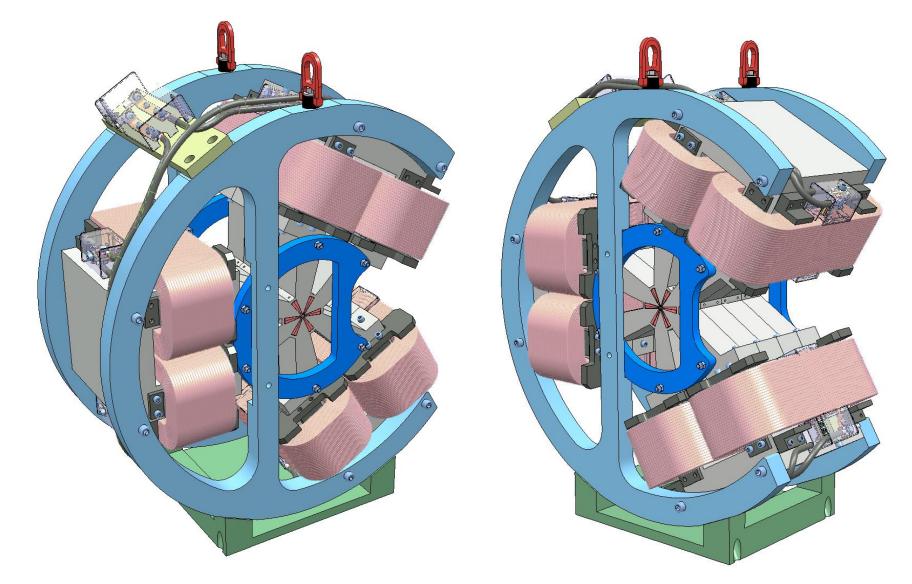
(NOTE: this case is much worse than the case where the same error appear in 6 symmetrically positioned blocks)



			bn		an				
N (b)	60°	360°	1° error in only one block	N (a)	60°	360°	1° error in only one block		
1	0.00	-0.05	-8.05	1	0.00	-0.15	9.40		
2	0.00	-0.01	-3.34	2	0.00	-0.01	6.48		
3	10000.00	10000.00	10000.00	3	0.00	-0.01	4.01		
4	0.00	0.00	-0.46	4	0.00	0.01	2.42		
5	0.00	0.00	-0.17	5	0.00	0.01	1.48		
6	0.01	0.00	0.57	6	0.00	0.00	1.37		
7	0.00	0.00	0.34	7	0.00	0.00	0.96		
8	0.00	0.00	0.31	8	0.00	0.00	0.55		
9	-0.01	-0.05	0.20	9	0.00	0.00	0.30		
10	0.00	0.00	0.18	10	0.00	0.00	0.16		
11	0.00	0.00	0.13	11	0.00	0.00	0.08		
12	0.01	0.00	0.06	12	0.00	0.00	0.01		
13	0.00	0.00	0.04	13	0.00	0.00	-0.01		
14	0.00	0.00	0.02	14	0.00	0.00	-0.01		
15	0.10	0.09	0.10	15	0.00	0.00	-0.01		


- Main requirements & boundary conditions:
 - Tunability of min: -20 %
 - Minimized vibrations (magnet is planned to be actively stabilized)
 - Integration with the post collision vacuum line needed.
- Compactness is less critical respect to QD0. Magnet is placed outside the Detector at the Accelerator Tunnel border.
- Prototype key aspects:
 - The proposed design permit a nominal tunability of -80%.
 - Manufacturing (with highest precision) of each Permendur sector, PM insert, "C" shape return yokes.
 - Measuring, Assembly and sorting of PM blocks.
 - The mechanical design should permit to investigate the precise longitudinal assembly of four central sections, each equipped with PM.
 - Assembly of the sectors (individual and global assembly procedure: magnetic forces between blocks impact? PM blocks are very fragile!).
 - Magnetic measurements.
 - Final alignment aspects..

d il:


CLIC SD0 Status

Some conclusions:

QD0:

- > CLIC QD0 baseline design (for $L^*=3.5$ m) is an hybrid quadrupole.
- > A short prototype of the magnet was successfully built to validate the concept.
- Some QD0 key aspects will be now studied on SD0 design and procurement.

Antisolenoid:

An antisolenoid was successfully studied and dimensioned (magnetic design) in order to be integrated in the MDI

SD0:

- Similar hybrid concept as QD0. Conceptual design is completed and technical design under completion.
- Started to contact components manufacturers to discuss the procurement and technical details (mainly the assembly procedures).
- > Investigation and optimization towards field quality are also addressed.

•

Thanks