Full one-loop electroweak radiative corrections to the $t\bar{t}\gamma$ and $e^-e^+\gamma$ production at ILC with GRACE-Loop

P.H. Khiem (SOKENDAI Univ. and KEK.)

In collaboration with

Y. Kurihara, T. Kaneko, J. Fujimoto, T. Ishikawa, Y. Shimizu (KEK), Y. Yasui (TMC); K. Kato, N. Nakazawa, K. Tobimatsu (Kogakuin Univ.); M. Igarashi (Tokai Univ.); J.A.M. Vermaseren (NIKHEF), and T. Ueda (KIT).

@LCWS13-Tokyo, Japan

GRACE-Loop

Outline

Introduction

- The GRACE-Loop system
- **Solution** The recently development of GRACE-Loop
- How to use GRACE-Loop: $e^+e^- \rightarrow t\bar{t}\gamma$ as a *example*.
- So The physical results of $t\bar{t}\gamma$, $e^+e^-\gamma$ production at ILC.
- Conclusions

Introduction

- Thank to the achievements of the LHC: the discovery a new boson compatible with a SM Higgs ^{1,2}.
- **2** We expect that the main goals of the ILC program are
 - precise measurements of Higgs properties: Higgs Boson mass, Spin, CP, Higgs couplings;
 - precise measurements of the interaction of top quarks, gauge bosons, etc;
 - searches for physics beyond the Standard Model (BSM).

 \implies Electroweak radiative corrections to the processes at e^-e^+ collisions will play an important role at the high precision program of ILC.

¹Physics Letters B 716 (2012) 30-61 ²Phys.Lett. B716 (2012) 1-29

Introduction

The luminosity determination at ILC

1 At ILC, the integrated luminosity is calculated by

$$\int \mathcal{L}dt = \frac{N_{obs}}{\sigma_{th}}$$

- Electroweak radiative corrections to Bhabha scattering are important.
- One-loop electroweak corrections to e⁺e⁻ → e⁺e⁻ were finished by many authors
 - K.Tobimatsu and Y.Shimizu: *Prog. Theor. Phys.* **74** (1985), 567-575; **75** (1986), 905-913.
 - M. Bohm et al: *Phys. Lett. B* **144** (1984) 414; *Nucl. Phys. B* **304** (1988) 687.
 - F. A. Berends et al:Nucl. Phys. B 304 (1988) 712.
- **Two-loop QED correction to** $e^+e^- \rightarrow e^+e^-$: A.A. Penin: *PhysRevLett.95.010408.*

 \implies We present a full $\mathcal{O}(\alpha)$ electroweak radiative corrections to process $e^+e^- \rightarrow e^+e^-\gamma$ GRACE-Loop in this talk.

Top quark pair production at ILC

- The experimental results of CDF and D0 observed a large top quark forward-backward asymmetry.
- In the future, the measurement will be performed at the ILC without QCD background
- The top quark properties (such as top quark mass, Γ_t, Y_t) also will be measured by scanning the top pair threshold at ILC.
 The precise theoretical calculations of tt and tt γ productions at e⁺e⁻ collisions are mandatory.
- **③** One-Loop EW corrections to $e^+e^- \rightarrow t\bar{t}$ were calculated by
 - J. Fujimoto et al, Mod. Phys. Lett. 3A, 581 (1988);
 - J. Fleischer et al, Eur. Phys. J. C 31, 37 (2003).

 \implies The calculation of $e^+e^- \rightarrow t\bar{t}, t\bar{t}\gamma$ with GRACE-Loop is also presented in this talk.

GRACE-Loop is a generic automated program for calculating High Energy Physics processes ³.

- All Feynman diagrams for a given process at fixed order of perturbation theory.
- A FORM or REDUCE code.
- A Fortran code generated for amplitude calculations.
- *Kinematic library.*
- The multi-dimensional integration by BASES.
- Event generation by SPRING.

For GRACE system, please visit website:

http://minami-home.kek.jp/

³Phys. Rept. 430 (2006) 117

The GRACE-Loop system

The GRACE-Loop system

The non-linear gauge fixing Lagrangian condition⁴

$$\begin{aligned} \mathcal{L}_{GF} &= -\frac{1}{\xi_W} |(\partial_\mu - i e \tilde{\alpha} A_\mu - i g c_W \tilde{\beta} Z_\mu) W^{\mu +} \\ &+ \xi_W \frac{g}{2} (v + \tilde{\delta} H + i \tilde{\kappa} \chi_3) \chi^+ |^2 \\ &- \frac{1}{2\xi_Z} (\partial Z + \xi_Z \frac{g}{2c_W} (v + \tilde{\varepsilon} H) \chi_3)^2 - \frac{1}{2\xi_A} (\partial A)^2 . \end{aligned}$$

• $\xi_W = \xi_Z = \xi_A = 1$: 'tHoof-Feynman gauge

$$\frac{1}{k^2 - M_W^2} \left[g_{\mu\nu} - (1 - \xi_W) \frac{k^{\mu} k^{\nu}}{k^2 - \xi_W^2 M_W^2} \right]$$

● → the result must be independence of non-linear gauge parameters

⁴Phys. Rept. **430**, 117 (2006)

The GRACE-Loop system has also been used to calculate

- 2 \rightarrow 3-body processes such as $e^+e^- \rightarrow ZHH$, $e^+e^- \rightarrow t\bar{t}H$, $e^+e^- \rightarrow \nu\bar{\nu}H$, etc.
- 2 \rightarrow 4-body process as $e^+e^- \rightarrow \nu_{\mu}\bar{\nu}_{\mu}HH$.

Recently the processes:

- $e^+e^- \to t\bar{t}\gamma$ (Eur. Phys. J. C **73**, 2400 (2013)).
- $e^+e^- \rightarrow e^+e^-\gamma$ at ILC in preparation.
- $pp \rightarrow W^+W^- + 1$ jet at LHC in progress.

The recently development of GRACE-Loop

2 The Monte-Carlo integration step costs much in CPU time.

The process: $e^+e^- \rightarrow e^+e^-\gamma$		
CPU	Memory	CPU time
Intel(R) Xeon(R), X5660@2.80GHz	49 GB	\geq 3 months @ \sqrt{s} .

\implies **BASES with MPI**⁵

⁵The Message Passing Interface: http://www.mcs.anl.gov/research/projects/mpi

The recently development of GRACE-Loop

The recently development of GRACE-Loop

produced by GRACEFIG

The process: $e^+e^- \rightarrow t\bar{t}\gamma$ Model = "nlg2301.mdl"; Process: $ELWK = \{5, 3\};$ Initial = {electron, positron} Final = {photon, t, t-bar}; Expand = Yes;OPI = No;Kinem = "2302"; Pend;

- 16 tree diagrams,
- 1814 one-loop diagrams.

The total cross section is given by

$$\sigma_{tot} = \int_{\Omega_{2\to3}} d\sigma_T^{e^+e^- \to t\bar{t}\gamma} + \int_{\Omega_{2\to3}} d\sigma_V^{e^+e^- \to t\bar{t}\gamma} (C_{UV}, \{\tilde{\alpha}, \tilde{\beta}, \tilde{\delta}, \tilde{\epsilon}, \tilde{\kappa}\}, \lambda) + \delta_{soft}(\lambda, E_{\gamma} < k_c) \int_{\Omega_{2\to3}} d\sigma_T^{e^+e^- \to t\bar{t}\gamma} + \int_{\Omega_{2\to4}} d\sigma_H^{e^+e^- \to t\bar{t}\gamma_S\gamma_H}(k_c)$$

The result is

- **•** satisfied the Ward indentity.
- **2** C_{UV} independent.
- **(a)** photon mass (λ) independent.
- In non linear gauge parameters independent.
- **(3)** k_c independent.
- in agreement with orther calculation.

produced by GRACEFIG

1. Ward identity

$\sum\limits_{\lambda=0}^{3}\epsilon_{\mu}^{\lambda}\epsilon_{ u}^{\lambda}$	$2\mathcal{R}(\mathcal{M}^+_{Tree}\mathcal{M}_{Loop})$
$-q_{\mu}q_{ u}$	$O(10^{-35})$
$-g_{\mu\nu}$	0.11082450191582567(4)
$-g_{\mu\nu}+rac{q_{\mu}n_{\nu}+q_{\nu}n_{\mu}}{n.q}$	0.11082450191582567(3)

2. Full one-loop diagrams of $e^+e^- \rightarrow t\bar{t}\gamma$

Test o	on th	e calculation
σ_{tot}	=	$\int_{\Omega_{2\to3}} d\sigma_T^{e^+e^- \to t\bar{t}\gamma} + \int_{\Omega_{2\to3}} d\sigma_V^{e^+e^- \to t\bar{t}\gamma}(C_{UV}, \{\tilde{\alpha}, \tilde{\beta}, \tilde{\delta}, \tilde{\epsilon}, \tilde{\kappa}\}, \lambda)$
		$+\delta_{soft}(\lambda, E_{\gamma} < k_{c})\int_{\Omega_{2\to3}} d\sigma_{T}^{e^{+}e^{-}\to t\bar{t}\gamma} + \int_{\Omega_{2\to4}} d\sigma_{H}^{e^{+}e^{-}\to t\bar{t}\gamma_{S}\gamma_{H}}(k_{c})$
1. C_{UV} independent of the amplitude		
C_l	JV	$2\mathcal{R}(\mathcal{M}^+_{Tree}\mathcal{M}_{Loop})$
0		$-6.7575992336127728658083765531206107\cdot 10^{-3}$
10	2	$-6.7575992336127728658083765531205867 \cdot 10^{-3}$
10	4	$-6.7575992336127728658083765531189308 \cdot 10^{-3}$

The result is stable over 30 digits in quadruple precision.

2.	λ independence of the result.
λ [GeV]	$2\mathcal{R}(\mathcal{M}^+_{Tree}\mathcal{M}_{Loop})$ +soft contribution
10^{-19}	$-1.6743892369492020397654354220438766 \cdot 10^{-3}$
10^{-21}	$-1.6743892369492020382892402083349623 \cdot 10^{-3}$
10^{-23}	$-1.6743892369492020382744348901161470 \cdot 10^{-3}$

The result are stable over 18 digits.

3. Gauge invariance of the amplitude check		
$(ilde{lpha}, ilde{eta}, ilde{\delta}, ilde{\kappa}, ilde{\epsilon})$	$2\mathcal{R}(\mathcal{M}^+_{Tree}\mathcal{M}_{Loop})$	
$(0,0,0,0,0)\cdot 10^0$	$-6.7575992336127728658083765531206 \cdot 10^{-3}$	
$(1, 2, 3, 4, 5) \cdot 10^1$	$-6.7575992336127728658083831456193 \cdot 10^{-3}$	
$(1, 2, 3, 4, 5) \cdot 10^2$	$-6.7575992336127728658090556378842 \cdot 10^{-3}$	

The result is stable over 21 digits in quadruple precision.

Test on the calculation

$$\sigma_{tot} = \int_{\Omega_{2\to3}} d\sigma_T^{e^+e^- \to t\bar{t}\gamma} + \int_{\Omega_{2\to3}} d\sigma_V^{e^+e^- \to t\bar{t}\gamma} (C_{UV}, \{\tilde{\alpha}, \tilde{\beta}, \tilde{\delta}, \tilde{\epsilon}, \tilde{\kappa}\}, \lambda) + \delta_{soft}(\lambda, E_{\gamma} < k_c) \int_{\Omega_{2\to3}} d\sigma_T^{e^+e^- \to t\bar{t}\gamma} + \int_{\Omega_{2\to4}} d\sigma_H^{e^+e^- \to t\bar{t}\gamma_S\gamma_H}(k_c)$$

4. *k_c* independence of the result.

10 ⁻⁵	$4.17272 \cdot 10^{-2}$	$5.88546 \cdot 10^{-2}$	0 10058
		5.00540 10	0.10038
10^{-3} .	$2.92668 \cdot 10^{-2}$	$7.13173 \cdot 10^{-2}$	0.10058
10^{-1}	$1.67899 \cdot 10^{-2}$	$8.37731 \cdot 10^{-2}$	0.10056

produced by GRACEFIG

Our input parameters for the calculation are as follows.

$\alpha = 1/137.0359895$	$G_{\mu} = 1.16639 \cdot 10^{-5} \mathrm{GeV^{-2}}$	$M_Z = 91.187 \text{GeV}$
$M_W = 80.3759 \mathrm{GeV}$	$M_H = 120 \text{ GeV}$	$m_e = 0.51099 \text{ MeV}$
$m_{ au} = 1776.82 \mathrm{MeV}$	$m_{\mu} = 105.6583 { m MeV}$	$m_u = 1.7 \text{ MeV}$
$m_d = 4.1 \text{ MeV}$	$m_c = 1.27 \text{ GeV}$	$m_s = 101 \text{ MeV}$
$m_b = 4.19 \mathrm{GeV}$	$m_t = 172.0 \mathrm{GeV}$	

We apply an energy cut of $E_{\gamma}^{cut} \ge 10$ GeV and an angle cut of $10^{\circ} \le \theta_{\gamma}^{cut} \le 170^{\circ}$ on the photon.

$$A_{FB} = \frac{\sigma(0^0 \le \theta_t \le 90^0) - \sigma(90^0 \le \theta_t \le 180^0)}{\sigma(0^0 \le \theta_t \le 90^0) + \sigma(90^0 \le \theta_t \le 180^0)}$$

 A_{FB} in $t\bar{t}\gamma$ and $t\bar{t}$ production

The process $e^+e^- \rightarrow e^+e^-\gamma$ with GRACE-Loop.

roduced by GRACEFIC

The process: $e^+e^- \rightarrow e^+e^-\gamma$ Model = "nlg2301.mdl"; Process: $ELWK = \{5, 3\};$ Initial = $\{\text{electron, positron}\};$ $Final = \{photon, electron, positron\}$ Expand = Yes;OPI = No:Kinem = "2302"; Pend;

• 32 tree diagrams,

GRACE-LOOD

• 3456 one-loop diagrams.

The physical results of process $e^+e^- \rightarrow e^+e^-\gamma$

Our input parameters for the calculation are as follows.

$\alpha = 1/137.0359895$	$G_{\mu} = 1.16639 \cdot 10^{-5} \mathrm{GeV^{-2}}$	$M_Z = 91.187 \text{GeV}$
$M_W = 80.3759 \mathrm{GeV}$	$M_H = 125 \text{ GeV}$	$m_e = 0.51099 \text{ MeV}$
$m_{\tau} = 1776.82 \mathrm{MeV}$	$m_{\mu} = 105.6583 { m MeV}$	$m_u = 1.7 \text{ MeV}$
$m_d = 4.1 \text{ MeV}$	$m_c = 1.27 \text{ GeV}$	$m_s = 101 \text{ MeV}$
$m_b = 4.19 \mathrm{GeV}$	$m_t = 172.0 \mathrm{GeV}$	

•
$$E_{\gamma,e^+,e^-}^{\text{cut}} \ge 10 \text{ GeV}, \theta_{\gamma,e^+,e^-}^{\text{cut}} = 10^\circ;$$

• $\theta_{\gamma/\{e^+,e^-\}}^{\text{cut}} = 10^\circ, \theta_{e^+/e^-}^{\text{cut}} = 10^\circ.$

The physical results of process $e^+e^- \rightarrow e^+e^-\gamma$

The physical results of process $e^+e^- \rightarrow e^+e^-\gamma$

 $d\sigma/dE_{\gamma}$ [pb/GeV] at 1 TeV. $d\sigma/dE_{\gamma}$ [pb/GeV] at 250 GeV. 0.1 Tree Tree Full correction Full correction 0.01 0.1 Standard and the standard 0.001 Continue and I have been been 0.0001 0.01 50 100 150 200 250 300 350 400 450 500 20 60 80 100 120 140 0 $E_{v}[GeV]$ $E_{\nu}[GeV]$

The physical results of process $e^+e^- \rightarrow e^+e^-\gamma$

 $d\sigma/dm_{e^+e^-}$ [pb/GeV] at 250 GeV

do/dm_{e⁺e⁻} [pb/GeV] at 1 TeV

- We introduced to the GRACE-Loop system which is a generic automated program for calculating High Energy Physics processes.
- The full O(α) electroweak radiative corrections
 e⁺e⁻ → tt
 τ τ, e⁺e⁻γ at ILC were calculated
 sucessfully with GRACE-Loop.

- We find that the numerical value of the weak corrections varies from 10% to -16% in the range of center-of-mass energy from 360 GeV to 1TeV.
- We also obtain a large value for the top quark forward-backward asymmetry in the $t\bar{t}\gamma$ process as compared with the one in $t\bar{t}$ production.

The physical results of the process $e^+e^- ightarrow e^+e^-\gamma$

- We find that the numerical value of the full electroweak radiative corrections varies from -2% to -20% in the range of center-of-mass energy from 250 GeV to 1TeV.
- This contribution is sizable. The full electroweak correction to the process play important role for the determination luminosity at ILC in the future.

Thank you very much for your attention!