Theory Uncertainties in LC Higgs Coupling Measurements

Sven Heinemeyer, IFCA (CSIC, Santander)

Tokyo, 11/2013

LHC Higgs Cross Section Working Group (BR)

A. Denner, A. Mück, I. Puljak, D. Rebuzzi, M. Spira

All the details:

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/BRs Eur. Phys. J. C 71 (2011) 1753 (2011) [arXiv:1107.5909 [hep-ph]]

What has to be done?

Find the new particle

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions
- 5. measure self-couplings

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions
- 5. measure self-couplings
- 6. measure spin, \mathcal{CP} , quantum numbers . . .

What has to be done?

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions
- 5. measure self-couplings
- 6. measure spin, \mathcal{CP} , quantum numbers . . .

done

- 1. Find the new particle done
- 2. measure its mass $(\Rightarrow ok?)$ done
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions
- 5. measure self-couplings
- 6. measure spin, \mathcal{CP} , quantum numbers . . .

What has to be done?

1.	Find the new particle	done	
2.	measure its mass (\Rightarrow ok?)	done	L
3.	measure coupling to gauge bosons		L
4.	measure couplings to fermions		L
5.	measure self-couplings		
6.	measure spin, \mathcal{CP} , quantum numbers		

L = LHC,

What has to be done?

1. Find the new particle	done	
2. measure its mass (\Rightarrow ok?)	done	L
3. measure coupling to gauge bosons		L
4. measure couplings to fermions		L
5. measure self-couplings		L
6. measure spin, \mathcal{CP} , quantum numbers		L

L = LHC, L = LHC (partially/unclear),

1. Find the new particle	done		
2. measure its mass (\Rightarrow ok?)	done	L	Ι
3. measure coupling to gauge bosons		L	Ι
4. measure couplings to fermions		L	Ι
5. measure self-couplings		L	Ι
6. measure spin, \mathcal{CP} , quantum numbers		L	Ι
L = LHC, $L = LHC$ (partially/unclear), $I = ILC$	C, I =	ILC	(doable?)

What has to be done?

1. Find the new particle	done			
2. measure its mass (\Rightarrow ok?)	done	L	Ι	
3. measure coupling to gauge bosons		L	Ι	
4. measure couplings to fermions		L	Ι	
5. measure self-couplings		L	Ι	
6. measure spin, \mathcal{CP} , quantum numbers		L	Ι	

L = LHC, L = LHC (partially/unclear), I = ILC, I = ILC (doable?) The LHC can investigate the Higgs mechanism and tell us a lot!

What has to be done?

1. Find the new particle	done					
2. measure its mass (\Rightarrow ok?)	done	L	Ι			
3. measure coupling to gauge bosons		L	Ι			
4. measure couplings to fermions		L	Ι			
5. measure self-couplings		L	Ι			
6. measure spin, \mathcal{CP} , quantum numbers		L	Ι			
L = LHC, $L = LHC$ (partially/unclear), $I = ILC$	C, I =	ILC	(doable?)			
The LHC can investigate the Higgs mechanism and tell us a lot!						
We need the ILC to fully establish the Higgs mechanism!						

Higgs coupling determination at the LHC

LHC always measures $\sigma \times BR$

 \Rightarrow Total width $\Gamma_{H,tot}$ cannot be measured without further theory assumptions.

Recommendation of the LHCHXSWG:

⇒ Higgs coupling strength scale factors: κ_i For each benchmark (except overall coupling strength) two versions are proposed: with and without taking into account the possibility of

additional contributions to the total width

- additional contributions to $\Gamma_{H,tot}$ are allowed:
- \Rightarrow Determination of ratios of scaling factors, e.g. $\kappa_i \kappa_j / \kappa_H$
- no additional contributions to $\Gamma_{H,tot}$ are allowed:
- \Rightarrow Determination of κ_i (evaluated to NLO QCD accuracy)

Some LC specifics:

recoil method: $e^+e^- \rightarrow ZH$, $Z \rightarrow e^+e^-$, $\mu^+\mu^-$

- \Rightarrow total measurement of Higgs production cross section
- ⇒ NO additional theoretical assumptions needed for absolute determination of partial widths
- \Rightarrow all observable channels can be measured with high accuracy

- \Rightarrow take cross section measurement as given
- \Rightarrow concentrate on BR uncertainties from now on

Z-recoil method:
$$e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^-X$$

 \Rightarrow crucial for a model independent coupling measurement!

Based on HDECAY and Prophecy4f:

$$\Gamma_H = \Gamma^{\mathsf{HD}} - \Gamma^{\mathsf{HD}}_{ZZ} - \Gamma^{\mathsf{HD}}_{WW} + \Gamma^{\mathsf{P4f}}_{4f}$$

1. Parametric Uncertainties: $p \pm \Delta p$

- Evaluate partial widths and BRs with p, $p + \Delta p$, $p \Delta p$ and take the differences w.r.t. central values
- Upper $(p + \Delta p)$ and lower $(p \Delta p)$ uncertainties summed in quadrature to obtain the Combined Parametric Uncertainty

2. Theoretical Uncertainties:

- Calculate uncertainty for partial widths and corresponding BRs for each theoretical uncertainty
- Combine the individual theoretical uncertainties linearly to obtain the Total Theoretical Uncertainty

3. Total Uncertainty:

Linear sum of the Combined Parametric Uncertainty and the Total Theoretical Uncertainties

Parameter	Central Value	Uncertainty	$m_q(m_q)$
$\alpha_s(M_Z)$	0.119	±0.002(90% CL)	
m_c	1.42 GeV	$\pm 0.03 \text{ GeV}(2\sigma)$	1.28 GeV
m_b	4.49 GeV	$\pm 0.06 \text{ GeV}(2\sigma)$	4.16 GeV
m_t	172.5 GeV	± 2.5 GeV	165.4 GeV

Comments:

 $-m_b$, m_c : one-loop pole masses

those masses accidentally show negligible dependence on α_s , so that their variation can be done independently from α_s

 $-m_b$, m_c uncertainties:

[K. Chetyrkin, J. Kühn, A. Maier, P. Maierhöfer, P. Marquard, M. Steinhauser, C. Sturm [arXiv:0907.2110]] (PDG uncertainties much larger . . .)

Theoretical uncertainties:

Partial Width	QCD	Electroweak	Total
$H \to b \overline{b} / c \overline{c}$	$\sim 0.1\%$	\sim 1–2% for $M_H \lesssim$ 135 GeV	$\sim 2\%$
$H \to \tau^+ \tau^- / \mu^+ \mu^-$		\sim 1–2% for $M_H \lesssim$ 135 GeV	$\sim 2\%$
$H \to t \overline{t}$	\lesssim 5%	\lesssim 2–5% for $M_H <$ 500 GeV	$\sim 5\%$
		$\sim 0.1 (rac{M_H}{1~{ m TeV}})^4$ for $M_H > 500~{ m GeV}$	\sim 5–10%
$H \to gg$	$\sim 3\%$	\sim 1%	\sim 3%
$H \to \gamma \gamma$	< 1%	< 1%	$\sim 1\%$
$H \to Z\gamma$	< 1%	$\sim 5\%$	$\sim 5\%$
$H \rightarrow WW/ZZ \rightarrow 4f$	< 0.5%	$\sim 0.5\%$ for $M_H < 500~{ m GeV}$	$\sim 0.5\%$
		$\sim 0.17 (rac{M_H}{1~{ m TeV}})^4$ for $M_H > 500~{ m GeV}$	$\sim 0.5 15\%$

Comments:

- QCD corrections: scale change by factor 2 and 1/2
- EW corrections: missing HO estimation based on the known structure and size of the NLO corrections
- For $M_H > 500$ GeV: higher-order heavy-Higgs corrections dominate error
- Different uncertainties on a given channel added linearly

$M_H = 126 \text{ GeV}$						
Decay	ΤU	PU	Total			
	[%]	[%]	[%]			
$H ightarrow \gamma \gamma$	±2.7	±2.2	±4.9			
$H ightarrow b ar{b}$	± 1.5	\pm 1.9	±3.3			
H ightarrow au au	± 3.5	± 2.1	± 5.6			
$H \rightarrow WW$	±2.0	±2.2	± 4.1			
$H \rightarrow ZZ$	±2.0	±2.2	±4.2			

But:

To take into accout correlations it is better/easier to work with uncertainties for the individual decay widths

Channel	Γ [MeV]	$\Delta \alpha_s$	Δm_b	Δm_c	Δm_t	THU
$H \rightarrow b\overline{b}$	2.36	-2.3% +2.3%	+3.3% -3.2%	+0.0% -0.0%	+0.0% -0.0%	+2.0% -2.0%
$H \to \tau^+ \tau^-$	$2.59 \cdot 10^{-1}$	+0.0% +0.0%	+0.0% -0.0%	+0.0% -0.0%	$^{+0.1\%}_{-0.1\%}$	+2.0% -2.0%
$H \to \mu^+ \mu^-$	$8.99 \cdot 10^{-4}$	+0.0% +0.0%	+0.0% -0.0%	$-0.1\% \\ -0.0\%$	$+0.0\% \\ -0.1\%$	+2.0% -2.0%
$H \to c \overline{c}$	$1.19 \cdot 10^{-1}$	-7.1% +7.0%	$-0.1\%\ -0.1\%$	+6.2% -6.1%	$+0.0\% \\ -0.1\%$	+2.0% -2.0%
$H \to gg$	$3.57 \cdot 10^{-1}$	+4.2% -4.1%	$-0.1\% \\ -0.1\%$	+0.0% -0.0%	-0.2% +0.2%	+3.0% -3.0%
$H \to \gamma \gamma$	$9.59 \cdot 10^{-3}$	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	$+1.0\% \\ -1.0\%$
$H \to Z\gamma$	$6.84 \cdot 10^{-3}$	+0.0% -0.0%	+0.0% -0.0%	$+0.0\% \\ -0.1\%$	$+0.0\% \\ -0.1\%$	+5.0% -5.0%
$H \to WW^*$	$9.73 \cdot 10^{-1}$	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.5% -0.5%
$H \to ZZ^*$	$1.22 \cdot 10^{-1}$	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.5% -0.5%

Data available for $M_H = 122 \text{ GeV}, 126 \text{ GeV}, 130 \text{ GeV}$

 \Rightarrow used for ATLAS and CMS evaluations \Rightarrow provided to Snowmass/Higgs

Theory uncertainties in the future?

Parametric uncertainties:

- largely driven by $\delta m_b \Rightarrow$ improvement unclear (to me)
- some improvement in α_s possible

Intrinsic uncertainties:

 $H \to b\overline{b}, H \to c\overline{c}$: EW corrections can be included (they are known at 1L) $H \to \tau^+ \tau^-, H \to \mu^+ \mu^-$: EW corrections can be included

(they are known at 1L)

- $H \rightarrow gg$: improvement difficult
- $H
 ightarrow \gamma\gamma$: already very precise . . .
- $H
 ightarrow Z \gamma$: EW corrections could help . . .

 $H \rightarrow WW^*, H \rightarrow ZZ^*$: already very precise, two-loop corrections unclear

Summary:

- SM Higgs BRs evaluated by combining HDECAY and Prophecy4f
- Parametric uncertainties: α_s , m_b , m_c , m_t
- Theoretical uncertainties: estimate of missing QCD and EW corrections
- Total uncertainties: linear sum
- Available from LHCHXSWG: uncertainties for BRs and decay widhts (the latter preferred for correlations)
- Results used for ATLAS and CMS evaluations

 \Rightarrow should be used for LC evaluations!

Thanks to A. Denner, A. Mück, I. Puljak, D. Rebuzzi, M. Spira