LHC top mass Alternative methods and prospects for the future Minsuk Kim **ONE** for the ATLAS and CMS collaborations 14 November 2013

International Workshop on Future Linear Colliders

11-15 November 2013, The University of Tokyo

 $\mathbf{E} \cdot \mathbf{LCWS13}$ 

# Outline

- Motivation
- Current Status
- Current Prospects
- More Luminosity
- Alternative Methods

LCWS13 - Tokyo

• Summary



# Motivation

Fundamental, heaviest known particle in the SM



LCWS13 - Tokyo

Minsuk Kim

# Current Status

• LHC m<sub>top</sub> combination CMS-PAS-TOP-13-005, ATLAS-CONF-2013-102

|            | 그 것 과 같은 것 것 같아. 것 같아. 영상은 것은 것은 것을 가지 않는 것 같아. |                      |  |  |  |  |
|------------|-------------------------------------------------|----------------------|--|--|--|--|
|            | ATLAS                                           | CMS                  |  |  |  |  |
|            | • di-lepton                                     | • di-lepton          |  |  |  |  |
| Channels   | • I + jets                                      | ● I + jets           |  |  |  |  |
|            |                                                 | • all jets           |  |  |  |  |
| Luminosity | 4.7 fb <sup>-1</sup>                            | 4.9 fb <sup>-1</sup> |  |  |  |  |



• Precisely measured, but systematically limited

✓ So far, 0.95 GeV at LHC (0.87 at Tevatron)

✓ Mostly from invariant mass-based method

LCWS13 - Tokyo

#### Where can we improve?

 $\rightarrow$  Need more luminosity?

Minsuk Kim

→ Consider several alternatives, providing consistency check

# **Current Prospects**

• LHC projection at Snowmass top mass study arXiv:1311.2028

ultimate precision at LHC ~ 0.6 GeV for conventional methods totally dominated by systematic uncertainties

note: extra 300 MeV included to account for extrapolation errors & mass definition

•  $e^+e^-$ : ILC/CLIC and TLEP benchmarks arXiv:1303.3758, 1308.6176

5

- measured from threshold scan in well-defined mass scheme
- key: statistics-dominated, challenge: theory interpretation

|            | M <sub>W</sub> [MeV] m <sub>top</sub> [MeV] |                     |                                |
|------------|---------------------------------------------|---------------------|--------------------------------|
| Present    | 80385 ± 15                                  | 173200 ± <b>870</b> |                                |
| Snowmass   | ± 5-10                                      | ± 600               | m <sub>top</sub> still hot top |
| ILC & CLIC | ± 10                                        | ± 100               | as a motivation                |
| TLEP       | ± 0.5                                       | ± 10-20             | for future collide             |

*Experimental sensitivity of sub-GeV range*  $\rightarrow$  *Theoretical interpretation important* 

> This talk going to present a New projection, based on the latest insights from current CMS studies using a cautiously optimistic approach (CMS-FTR-13-017)

LCWS13 - Tokyo

Minsuk Kim

# More Luminosity

• Cross-section and pileup evolution



### Extrapolating standard methods (I)



(ATLAS: measurements of differential  $\sigma$  and jet shapes: Eur. Phys. J. C73 (2013) 2261 & PHYS-PUB-2013-005)

### Extrapolating standard methods (II)





# Extrapolating standard methods (III)



► Differential analysis approaches to improve JES uncertainty, and further constrain and tune theory (fully effective with 3000 fb<sup>-1</sup>)

## Extrapolating standard methods (IV)

| Increased pileup                                  | Loss in trigger<br>efficiency                                                                                                         | <ul> <li><u>Compensation and help:</u></li> <li>increased σ<sub>tt</sub></li> <li>new techniques</li> <li>improved methods</li> <li>Phase-2 (HL-LHC) upgrades</li> </ul>                                                     |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use of 3D fitting methods<br>(pioneered by ATLAS) | Constrain the relative<br>b-JES uncertainty                                                                                           | <u>Appearance:</u><br>• b-JES stat. comp. (~0.7 GeV)<br>• b-tagging uncertainty                                                                                                                                              |
| Differential studies<br>(pioneered by CMS)        | Handle JES dependence<br>& non-perturbative QCD                                                                                       | Search for possible mis-modeling to QCD & JES; treat such effects                                                                                                                                                            |
| Full NLO+PS MC tools<br>& data-driven constraints | Allow a well-defined<br>MC mass scheme and<br>reduced scale<br>uncertainties<br>& improved MC<br>validation with data<br>and UE tunes | Opportunity:<br>• reduce as well double<br>counting of uncertainties (PU,<br>ISR/FSR evaluated separately,<br>but also included in JES)<br>• assume factor-2 reduction:<br>b-tagging, background shape,<br>PDFs, QCD effects |

# Extrapolating standard methods (V)



LCWS13 - Tokyo

Minsuk Kim

# Projection for standard methods (I)



## Projection for standard methods (II)



# Projection for standard methods (III)



### Table of projection in I+jets (GeV)

#### CMS-PAS-FTR-13-017

|                                                          | Current             |                   | Future             |                     | Comment                        |
|----------------------------------------------------------|---------------------|-------------------|--------------------|---------------------|--------------------------------|
| Center-of-mass energy                                    | 7 TeV               | 13 TeV            | 14 TeV             | 14 TeV              |                                |
|                                                          | l+jets              |                   |                    |                     |                                |
| Integrated luminosity                                    | $5\mathrm{fb}^{-1}$ | $30{\rm fb}^{-1}$ | $300{\rm fb}^{-1}$ | $3000{\rm fb}^{-1}$ |                                |
| Fit calibration                                          | 0.06                | 0.03              | 0.03               | 0.03                | MC statistics                  |
| b-JES                                                    | 0.61                | 0.27              | 0.09               | 0.03                | 3D fit                         |
| <b>Residual JES</b> ( $p_T$ - and $\eta$ -dependent JES) | 0.28                | 0.28              | 0.2                | 0.06                | differential                   |
| Lepton energy scale                                      | 0.02                | 0.02              | 0.02               | 0.02                | unchanged                      |
| Missing transverse momentum                              | 0.06                | 0.06              | 0.06               | 0.06                | unchanged                      |
| Jet energy resolution                                    | 0.23                | 0.23              | 0.2                | 0.06                | differential                   |
| b tagging                                                | 0.12                | 0.06              | 0.06               | 0.06                | factor 2 (data)                |
| Pileup                                                   | 0.07                | 0.07              | 0.07               | 0.07                | unchanged                      |
| Non-tt background                                        | 0.13                | 0.06              | 0.06               | 0.06                | factor 2 $(S/B)$               |
| Parton distribution functions                            | 0.07                | 0.04              | 0.04               | 0.04                | factor 2 (PDF fits)            |
| Renormalization and<br>factorization scales              | 0.24                | 0.12              | 0.12               | 0.06                | full NLO + differential        |
| ME-PS matching threshold                                 | 0.18                | 0.09              | 0.09               | 0.06                | full NLO + differential        |
| Underlying event                                         | 0.15                | 0.15              | 0.15               | 0.06                | differential                   |
| Color reconnection effects                               | 0.54                | 0.27              | 0.2                | 0.06                | factor 2 + <i>differential</i> |
| Systematic                                               | 0.98                | 0.60              | 0.44               | 0.20                |                                |
| Statistical                                              | 0.43                | 0.15              | 0.05               | 0.01                |                                |
| Total                                                    | 1.07                | 0.62              | 0.44               | 0.20                |                                |

44 夏

Minsuk Kim

# **Optimistic Scenarios**

|                                | Present |     | 2015   | nominal | HL-LHC |
|--------------------------------|---------|-----|--------|---------|--------|
| CM energy (TeV)                | 7 8     |     | 13     | 14      |        |
| Cross section (pb)             | 167     | 246 | 806    | 951     |        |
| Luminosity (fb <sup>-1</sup> ) | 5       | 20  | 30 300 |         | 3000   |
| <pileup></pileup>              | 9.3     | 19  | ~30    | ~30     | ~95    |
| Syst. (GeV)                    | 0.98    |     | 0.60   | 0.44    | 0.20   |
| Stat. (GeV)                    | 0.43    |     | 0.15   | 0.05    | 0.01   |
| Total                          | 1.07    |     | 0.62   | 0.44    | 0.20   |

LCWS13 - Tokyo

x1 x10 x100

16

*I*+*jets as a baseline* 

Minsuk Kim

# Alternative Methods

- Alternative approaches to m<sub>top</sub> are considered
  - provide consistency checks
  - factorize specific systematic uncertainties
  - impact final combination or backup if the standard methods do not evolve as initially projected

To get a better understanding of measured  $m_{top}$  and its relation to theory, a considerable reduction of the total uncertainty is needed

 $\rightarrow$  application of alternative methods to improve the experimental precision!

# Kinematic endpoints

- m<sub>top</sub> from lepton-jet spectra + other related variables
  - endpoint has a relation to the parent particle's mass
  - independent of assumptions on shapes (no templates or transfer functions)
  - M<sub>T2</sub>: minimum parent mass consistent with observed final state
  - three  $M_{T2\perp}$  subsystem variables: measure top, W and v simultaneously



# B-hadron lifetime (L<sub>xy</sub>)

- m<sub>top</sub> from displacement of secondary vertices reconstructed in jets (formed from hadronization of b quark)
  - consider B hadron decay length to be analogously correlated to m<sub>top</sub>

 not sensitive to Jet Energy Scale
 relies on proper understanding of top kinematics modeling



Final state product of  $t \rightarrow Wb$  with  $W \rightarrow Iv$ Blue & red : primary and secondary vertices  $L_{xy}$  : transverse decay length  $d_0$  : transverse impact parameter distance

LCWS13 - Tokyo



CMS-PAS-TOP-12-030

# $J/\psi$ method

- J/ $\psi$  method:  $m_{top}$  from tri-lepton invariant mass
  - no use of jets, thus minimize effects on jet energy calibration



# Extraction from $\sigma_{pp \rightarrow t\bar{t}}$

- Comparing measured  $\sigma_{tt}$  to the QCD prediction
  - under the assumption that  $m_{top} = m_t^{pole}$

LCWS13 - Tokyo

- $m_{top}$  obtained in a well-defined theoretical mass scheme  $\rightarrow$  expected to be limited by the relatively poor sensitivity of  $\sigma_{tt}$  to  $m_{top}$
- Predicted  $\sigma_{tt}$  using different NNLO PDF sets vs.  $m_t$



• optimistic: a few GeV if mass dependence of measured  $\sigma_{tt}$  can be reduced

Minsuk Kim





CMS-PAS-FTR-13-017

#### Projection overview (II): +higher L



CMS-PAS-FTR-13-01

23

# Projection overview: total



# Summary

- Overview of LHC top mass measurements projections
  - Higher statistics is crucial  $\rightarrow$  great benefits in the standard methods
  - New considerations: 3D fits, differential measurements, full NLO
  - → very good prospects for reduction of JES calibration & QCD effects
  - Purely experimental point of view  $\rightarrow$  theoretical interest for ILC
- Overview of alternative methods with projections
  - Can't compete with the standard methods, but can provide crosschecks and better understanding of systematic uncertainties
  - May be more easily interpreted from the theoretical point of view
  - Did not yet consider combinations (different channels & techniques)





#### Mass from Endpoint Analysis

- Endpoint analysis: independent of assumptions on shapes (no templates or transfer functions)
- M<sub>T2</sub>: minimum parent mass consistent with observed final state
- M<sub>T2⊥</sub>: remove production dynamics, keep only momentum components perpendicular to 2-parent p<sub>T</sub>
- Three M<sub>T2⊥</sub> subsystem variables: measure top, W- and neutrino masses simultaneously



### Extrapolating the endpoint method

#### CMS-PAS-FTR-13-017

Table 2: Projection of the top-quark mass precision (in GeV) obtained with the endpoint method, for various integrated luminosities using the assumptions explained in the text.

|                                 | Current             | Future            |                      |                     | Comment               |
|---------------------------------|---------------------|-------------------|----------------------|---------------------|-----------------------|
| Center-of-mass energy           | 7 TeV               | 13 TeV            | 14 TeV               | 14 TeV              |                       |
| Integrated luminosity           | $5\mathrm{fb}^{-1}$ | $30{\rm fb}^{-1}$ | $300  {\rm fb}^{-1}$ | $3000{\rm fb}^{-1}$ |                       |
| Jet energy scale and resolution | 1.6                 | 0.9               | 0.5                  | 0.3                 | improve with data     |
| Lepton energy scale             | 0.4                 | 0.2               | 0.2                  | 0.2                 | factor 2              |
| Jet and lepton efficiencies     | 0.2                 | 0.2               | 0.2                  | 0.2                 | unchanged             |
| Fit range                       | 0.6                 | 0.2               | 0.2                  | 0.2                 | statistics (factor 4) |
| Background shape                | 0.5                 | 0.2               | 0.1                  | 0.02                | statistics            |
| QCD effects                     | 0.6                 | 0.3               | 0.3                  | 0.3                 | factor 2              |
| Pileup                          | 0.1                 | 0.1               | 0.1                  | 0.1                 | unchanged             |
| Systematic                      | 1.9                 | 1.0               | 0.6                  | 0.5                 |                       |
| Statistical                     | 0.9                 | 0.4               | 0.1                  | 0.04                |                       |
| Total                           | 2.1                 | 1.1               | 0.6                  | 0.5                 |                       |

# Extrapolating the J/ $\psi$ method

note: no result at 7 or 8 TeV, so starting at 30 fb<sup>-1</sup>

CMS-PAS-FTR-13-017

Table 3: Expected top-quark mass precision (in GeV) achieved with the J/ $\psi$  method, for various integrated luminosities using the assumptions explained in the text.

|                                    | Future               |                    |                     | Comment                                 |
|------------------------------------|----------------------|--------------------|---------------------|-----------------------------------------|
| Center-of-mass energy              | 13 TeV               | 14 TeV             | 14 TeV              |                                         |
| Integrated luminosity              | $30\mathrm{fb}^{-1}$ | $300{\rm fb}^{-1}$ | $3000{\rm fb}^{-1}$ |                                         |
| Parton distribution functions      | 0.3                  | 0.2                | 0.1                 | improve with theory and data            |
| Renormalisation and                | 00                   | 0.4                | 0.4                 | improve with NNI O for ma               |
| factorization scales               | 0.9                  | 0.4                | 0.4                 | improve with initial of m <sub>lB</sub> |
| Initial- and final-state radiation | 0.3                  | 0.2                | 0.1                 | full NLO gen. + diff. data              |
| b and light fragmentation          | 0.7                  | 0.5                | 0.3                 | improve with data                       |
| Underlying event                   | 0.6                  | 0.2                | 0.1                 | improve with data                       |
| Lepton energy scale and resolution | 0.5                  | 0.2                | 0.2                 | improve with data                       |
| Jet energy scale and resolution    | 0.1                  | 0.1                | 0.1                 | _                                       |
| Background knowledge               | 0.2                  | 0.1                | 0.1                 |                                         |
| Systematic                         | 1.5                  | 0.8                | 0.6                 |                                         |
| Statistical                        | 1.0                  | 0.3                | 0.1                 |                                         |
| Total                              | 1.8                  | 0.8                | 0.6                 |                                         |

 $\blacktriangleright$  CMS PAS TOP-13-007 confirmed J/ $\psi$  selection efficiencies from the TDR

## Extrapolating the L<sub>xy</sub> method

note: use e-mu channel only (96% pure sample)

#### CMS-PAS-FTR-13-017

Table 4: Projection of the top-quark mass precision (in GeV) obtained with the  $L_{xy}$  method, for various integrated luminosities using the assumptions explained in the text.

|                                | Current             |                   | Future             |                       | Comment           |
|--------------------------------|---------------------|-------------------|--------------------|-----------------------|-------------------|
| Center-of-mass energy          | 8 TeV               | 13 TeV            | 14 TeV             | 14 TeV                |                   |
|                                | еµ                  |                   |                    |                       |                   |
| Integrated luminosity          | $20  {\rm fb}^{-1}$ | $30{\rm fb}^{-1}$ | $300{\rm fb}^{-1}$ | $3000  {\rm fb}^{-1}$ |                   |
| b fragmentation/hadronization  | 0.8                 | 0.4               | 0.4                | 0.3                   | improve with data |
| Top $p_T$ modeling             | 2.4                 | 0.2               | 0.2                | 0.2                   | improve at NNLO   |
| Other systematic uncertainties | 1.1                 | 0.3               | 0.2                | 0.2                   | improve with data |
| Systematic                     | 2.8                 | 0.6               | 0.5                | 0.4                   |                   |
| Statistical                    | 2.0                 | 1.1               | 0.4                | 0.1                   |                   |
| Total                          | 3.4                 | 1.3               | 0.6                | 0.4                   |                   |



 Currently limited by statistical uncertainties
 Will offer the possibility to constrain the dominant systematics but fully effective with 3000 fb<sup>-1</sup>

LCWS13 - Tokyo

Minsuk Kim