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Introduction



Jets are essential to high-precision 
determination of       and the top mass↵s

2004

asymptotic freedom

See talk of G. Luisoni and J. Mackenzie 
for update on recent determinations



Jets are essential to high-precision 
determination of       and the top mass↵s

Its mass usually determined by reconstruction

Short distance scheme to achieve high precision

Jet physics play an essential role in achieving this goal 

Top is by far the heaviest quark

See talk by A. Hoang for top mass 
measurements at the ILC and LHC



e+ e�

Electron and positron collide at very high energy

Q = Ee+ + Ee�center of mass energy

Jet formation and evolution



e+ e�

q

At very short distance the hard interaction occurs

Hard collision
µh ⇠ Qtypical scale

primary quarks are 
created

✓T

q̄

Jet formation and evolution



e�

q

At very short distance the hard interaction occurs

Hard collision
µh ⇠ Qtypical scale

primary quarks are 
created

✓T

e−(p1)

e+(p2) q (q1)

q̄ (q2)

γ, Z

q̄

Jet formation and evolution

Described 
by hard 
function



e+ e�

q

Creating a third jet is very unlikely

Hard, central gluon

Radiating a central, 
energetic gluon is 

suppressed by         and 
also power suppressed 

↵s(Q)
↵s(Q)

(

q̄

Jet formation and evolution

We will call these 
contributions 
nonsingular



e+ e�

q

q̄

At longer distances collinear radiation off quarks occur

collinear emissions
typical scale

perturbative jets are 
formed

µJ ⇠ Q⇤QCD

collinear enhancement 
compensates power 
of ↵s(Q)

splitting 
probability

⇠ ↵s

Eg(1� cos ✓)

Jet formation and evolution
Described 
by jet 
function



e+ e�

q

At long distance, large angle soft gluons are emitted

soft emissions
scale µS & ⇤QCD

cross talk between jets 
necessary for color 

conservation

These are still 
perturbative gluons

splitting 
probability

soft enhancement 
compensates power 
of ↵s(Q)

⇠ ↵s

Eg(1� cos ✓)

q̄

Jet formation and evolution

Described 
by soft 
function



e+ e�

At very long distances hadronization takes place

hadronization
scale

Purely non-
perturbative effect

µ⇤ ⇠ ⇤QCD

⇡
⇡

⇡

⇡

K

⇢

K

p

Jet formation and evolution

⇡

⇡

⇡

Described by 
the shape 
function



Event Shapes



⌧ = 1�max

n̂

P
|~pi · n̂|P
|~pi|

Q  = 91.2 GeV
peak

tail far-tail

Event shapes characterize in a 
geometrical way the distribution of 

hadrons in the final state

They are theoretically more 
friendly than a Jet algorithm

Continuous transition from 2-jet to 
3-jet, ... multi-jet events

Event Shapes

e+ e� ! jets
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Most common Event shapes

• Thrust	


!

• Angularities	


!

• Jet Masses	


!

• Jet Broadening	


!

• C-parameter	


!

• 2-Jettiness

⌧(a) =
1

Q

X

i

Ei (sin ✓i)
a
(1� | cos ✓i|)1�a

B =

P
i |~pi ⇥ ~n|P

i |~pi|

[E. Farhi]

[Berger, Kucs, Sterman]

[Parisi]	

[Donoghue, Low, Pi]

[Clavelli]	

[Chandramohan Clavelli]

[Catani,  Turnock, Webber]

⌧2 = 1�max

~n

P
i |~pi · ~n|
Q

[Stewart, Tackmann, 
Waalewijn]



• Thrust	


!

• Angularities	


!

• Jet Masses	


!

• Jet Broadening	


!

• C-parameter	


!

• 2-Jettiness

⌧(a) =
1

Q

X

i

Ei (sin ✓i)
a
(1� | cos ✓i|)1�a

B =

P
i |~pi ⇥ ~n|P

i |~pi|

⌧2 = 1�max

~n

P
i |~pi · ~n|
Q

2-jet event 
shapes

e ! 0

dijet configuration

Most common Event shapes



• Thrust	


!

• Angularities	


!

• Jet Masses	


!

• Jet Broadening	


!

• C-parameter	


!

• 2-Jettiness

⌧(a) =
1

Q

X

i

Ei (sin ✓i)
a
(1� | cos ✓i|)1�a

B =

P
i |~pi ⇥ ~n|P

i |~pi|

⌧2 = 1�max

~n

P
i |~pi · ~n|
Q

Depend on a 
continuous 
parameter

Most common Event shapes



• Thrust	


!

• Angularities	


!

• Jet Masses	


!

• Jet Broadening	


!

• C-parameter	


!

• 2-Jettiness

⌧(a) =
1

Q

X

i

Ei (sin ✓i)
a
(1� | cos ✓i|)1�a

B =

P
i |~pi ⇥ ~n|P

i |~pi|

⌧2 = 1�max

~n

P
i |~pi · ~n|
Q

Recoil sensitive

Most common Event shapes



• Thrust	


!

• Angularities	


!

• Jet Masses	


!

• Jet Broadening	


!

• C-parameter	


!

• 2-Jettiness

⌧(a) =
1

Q

X

i

Ei (sin ✓i)
a
(1� | cos ✓i|)1�a

B =

P
i |~pi ⇥ ~n|P

i |~pi|

⌧2 = 1�max

~n

P
i |~pi · ~n|
Q

does not 
require 

minimization 
procedure

Most common Event shapes

double sum



Most common Event shapes

• Thrust	


!

• Angularities	


!

• Jet Masses	


!

• Jet Broadening	


!

• C-parameter	


!

• 2-Jettiness

⌧(a) =
1

Q

X

i

Ei (sin ✓i)
a
(1� | cos ✓i|)1�a

B =

P
i |~pi ⇥ ~n|P

i |~pi|

⌧2 = 1�max

~n

P
i |~pi · ~n|
Q

Will show fits for
↵s

          fits are work 
in progress
↵s

there is no data

Will show fits for
↵s

there is no data



Resummation of large logarithms
Event shapes are not inclusive quantities

Invalidates perturbative 
expression for small

1

�0

d�

d⌧
= �2↵s

3⇡

1

⌧

⇣
3 + 4 log ⌧ + . . .

⌘

One has to reorganize the expansion by considering ↵s lg(⌧) ⇠ O(1)

Large logs at small τ



log⌃(⌧c) =↵s(log
2 ⌧c + log ⌧c + 1)

↵2
s (log

3 ⌧c + log

2 ⌧c + log ⌧c + 1)

↵3
s (log

4 ⌧c + log

2 ⌧c + log

2 ⌧c + log ⌧c + 1)

↵4
s (log

5 ⌧c + log

3 ⌧c + log

2 ⌧c + log

2 ⌧c + log ⌧c + 1)

· · ·

Resummation of large logarithms
Event shapes are not inclusive quantities

Invalidates perturbative 
expression for small

Counting more clear in the 
exponent of cumulant
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One has to reorganize the expansion by considering

⌃(⌧c) ⌘
Z ⌧c

0
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1

�0
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↵s lg(⌧) ⇠ O(1)

Large logs at small τ



LOlog⌃(⌧c) =↵s(log
2 ⌧c + log ⌧c + 1)

↵2
s (log
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· · ·

Resummation of large logarithms
Event shapes are not inclusive quantities

Invalidates perturbative 
expression for small

Counting more clear in the 
exponent of cumulant
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Large logs at small τ



LO
NLO
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LO
NLO

NNLO

not known!

State of the art
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· · ·
[Weinzierl]

[Gehrmann-De Rider, Gehrmann, Glover, Heinrich]

[Catani, Seymour]

Resummation of large logarithms
Event shapes are not inclusive quantities

Invalidates perturbative 
expression for small

Counting more clear in the 
exponent of cumulant

1

�0

d�

d⌧
= �2↵s

3⇡

1

⌧

⇣
3 + 4 log ⌧ + . . .

⌘

One has to reorganize the expansion by considering

⌃(⌧c) ⌘
Z ⌧c

0
d⌧

1

�0

d�

d⌧

↵s lg(⌧) ⇠ O(1)

Large logs at small τ



log⌃(⌧c) =↵s(log
2 ⌧c + log ⌧c + 1)

↵2
s (log

3 ⌧c + log

2 ⌧c + log ⌧c + 1)

↵3
s (log

4 ⌧c + log

2 ⌧c + log

2 ⌧c + log ⌧c + 1)

↵4
s (log

5 ⌧c + log

3 ⌧c + log

2 ⌧c + log

2 ⌧c + log ⌧c + 1)

· · ·
LL

...
...

...
...

...

Resummation of large logarithms
Event shapes are not inclusive quantities

Invalidates perturbative 
expression for small

Counting more clear in the 
exponent of cumulant

1

�0

d�

d⌧
= �2↵s

3⇡

1

⌧

⇣
3 + 4 log ⌧ + . . .

⌘

One has to reorganize the expansion by considering

⌃(⌧c) ⌘
Z ⌧c

0
d⌧

1

�0

d�

d⌧

↵s lg(⌧) ⇠ O(1)

Large logs at small τ



NLL

log⌃(⌧c) =↵s(log
2 ⌧c + log ⌧c + 1)

↵2
s (log

3 ⌧c + log

2 ⌧c + log ⌧c + 1)

↵3
s (log

4 ⌧c + log

2 ⌧c + log

2 ⌧c + log ⌧c + 1)

↵4
s (log

5 ⌧c + log

3 ⌧c + log

2 ⌧c + log

2 ⌧c + log ⌧c + 1)

· · ·
LL

...
...

...
...

...

Resummation of large logarithms
Event shapes are not inclusive quantities

Invalidates perturbative 
expression for small

Counting more clear in the 
exponent of cumulant

1

�0

d�

d⌧
= �2↵s

3⇡

1

⌧

⇣
3 + 4 log ⌧ + . . .

⌘

One has to reorganize the expansion by considering

⌃(⌧c) ⌘
Z ⌧c

0
d⌧

1

�0

d�

d⌧

↵s lg(⌧) ⇠ O(1)

Large logs at small τ



log⌃(⌧c) =↵s(log
2 ⌧c + log ⌧c + 1)

↵2
s (log

3 ⌧c + log

2 ⌧c + log ⌧c + 1)

↵3
s (log

4 ⌧c + log

2 ⌧c + log

2 ⌧c + log ⌧c + 1)

↵4
s (log

5 ⌧c + log

3 ⌧c + log

2 ⌧c + log

2 ⌧c + log ⌧c + 1)

· · ·
LL NLL N2LL

...
...

...
...

...

Resummation of large logarithms
Event shapes are not inclusive quantities

Invalidates perturbative 
expression for small

Counting more clear in the 
exponent of cumulant

1

�0

d�

d⌧
= �2↵s

3⇡

1

⌧

⇣
3 + 4 log ⌧ + . . .

⌘

One has to reorganize the expansion by considering

⌃(⌧c) ⌘
Z ⌧c

0
d⌧

1

�0

d�

d⌧

↵s lg(⌧) ⇠ O(1)

Large logs at small τ



log⌃(⌧c) =↵s(log
2 ⌧c + log ⌧c + 1)

↵2
s (log

3 ⌧c + log

2 ⌧c + log ⌧c + 1)

↵3
s (log

4 ⌧c + log

2 ⌧c + log

2 ⌧c + log ⌧c + 1)

↵4
s (log

5 ⌧c + log

3 ⌧c + log

2 ⌧c + log

2 ⌧c + log ⌧c + 1)

· · ·
LL NLL N2LL N3LL

...
...

...
...

...
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[Becher, Schwartz]

[Chien, Schwartz]

[Hoang, Kolodrubetz, VM, Stewart]

[Abbate, Fickinger, Hoang, VM, Stewart]

Resummation of large logarithms
Event shapes are not inclusive quantities

Invalidates perturbative 
expression for small

Counting more clear in the 
exponent of cumulant
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Large logs at small τ

[Hoang, VM, 
Schwartz, Stewart]



Factorization



Universal Wilson 
Coefficient

Jet function Soft function Nonsingular terms, 
power corrections

Factorization theorem for event shapes (Will focus on SCET 
but CSS is equivalent)

1

�0

d�

de
= HQ ⇥ Je ⌦ Se +O

⇣
e0,

⇤QCD

Q

⌘
[Bauer, Lee, Fleming, Sterman]

[Berger, Kuks, Sterman]



Universal Wilson 
Coefficient

Jet function Soft function Nonsingular terms, 
power corrections(

Calculable in perturbation theory

(

Perturbative and 
nonperturbative components

Soft Wilson lines event shape operator

Se(e) = h 0 |Y †
n̄Y

†
n �(`�Qê)YnY n̄ | 0 i Leading power correction 

comes from soft function

Factorization theorem for event shapes (Will focus on SCET 
but CSS is equivalent)

1

�0

d�

de
= HQ ⇥ Je ⌦ Se +O

⇣
e0,

⇤QCD

Q

⌘
[Bauer, Lee, Fleming, Sterman]

[Berger, Kuks, Sterman]



Universal Wilson 
Coefficient

Jet function Soft function Nonsingular terms, 
power corrections(

Calculable in perturbation theory

(

Perturbative and 
nonperturbative components

Soft Wilson lines event shape operator

perturbative

Se = Ŝe ⌦ Fe

nonperturbative & 
perturbative [VM, Thaler, Stewart]

d�

de
=

d�̂

de
⌦ Fe

Se(e) = h 0 |Y †
n̄Y

†
n �(`�Qê)YnY n̄ | 0 i Leading power correction 

comes from soft function

Factorization theorem for event shapes (Will focus on SCET 
but CSS is equivalent)

1

�0

d�

de
= HQ ⇥ Je ⌦ Se +O

⇣
e0,

⇤QCD

Q

⌘
[Bauer, Lee, Fleming, Sterman]

[Berger, Kuks, Sterman]

[Korchemsky & Sterman]

[Korchemsky, Sterman, Tafat]



Universal Wilson 
Coefficient

Jet function Soft function Nonsingular terms, 
power corrections(

Calculable in perturbation theory

(

Perturbative and 
nonperturbative components

Factorization theorem for event shapes (Will focus on SCET 
but CSS is equivalent)

1

�0

d�

de
= HQ ⇥ Je ⌦ Se +O

⇣
e0,

⇤QCD

Q

⌘
[Bauer, Lee, Fleming, Sterman]

[Berger, Kuks, Sterman]

Heavy Jet Mass is slightly 
more complicated than this 

(more on this later)



Large log 
Resummation



Renormalization group evolution

hard scale

jet scale

soft scale

⇤QCD

µH ⇠ Q

µJ ⇠ Q
p
⌧

µS ⇠ Q ⌧

The hierarchy among 
the scales depends 
on the position on 
the spectrum

log

n

✓
Q

µ

◆

log

n

✓
Q⌧

µ

◆

large logs

log

n

✓
Q2⌧

µ2

◆



hard scale

jet scale

soft scale

⇤QCD

µH ⇠ Q

µJ ⇠ Q
p
⌧

µS ⇠ Q ⌧

local running

non-local running

log

n

✓
Q

µJ

◆

log

n

✓
µJ

µS

◆

Renormalization group evolution



hard scale

jet scale

soft scale

⇤QCD

µH ⇠ Q

µJ ⇠ Q
p
⌧

µS ⇠ Q ⌧

local running

non-local running

log

n

✓
Q

µS

◆

log

n

✓
µJ

µS

◆

Renormalization group evolution



hard scale

jet scale

soft scale

⇤QCD

µH ⇠ Q

µJ ⇠ Q
p
⌧

µS ⇠ Q ⌧

non-local running

non-local running

log

n

✓
Q

µS

◆

log

n

✓
Q

µJ

◆

Renormalization group evolution



Power Corrections



Se(e) = h 0 |Y †
n̄Y

†
n �(`�Qê)YnY n̄ | 0 i

For e � ⇤QCD

Q
Correct up to O(↵s)

Fe(`) ' �(`)� ⌦1�
0(`)Shape function can be 

expanded in the tail

OPE for non-perturbative corrections

�(`�Qê) ' �(`)� �0(`)Qê+ . . .

⌦1 = h 0 |Y †
n̄Y

†
nQêYnY n̄ | 0 i

[Lee & Sterman]



Se(e) = h 0 |Y †
n̄Y

†
n �(`�Qê)YnY n̄ | 0 i

For e � ⇤QCD

Q
Correct up to O(↵s)

Fe(`) ' �(`)� ⌦1�
0(`)Shape function can be 

expanded in the tail

OPE for non-perturbative corrections

�(`�Qê) ' �(`)� �0(`)Qê+ . . .

⌦1 = h 0 |Y †
n̄Y

†
nQêYnY n̄ | 0 i

[Lee & Sterman]

d�

de
=

d�̂

de
� ⌦1

Q

d

de

d�̂

de
' d�̂

de

⇣
e� ⌦1

Q

⌘
+O

" 
⇤QCD

Qe

!2#

Universality: ⌦e
1 = ce ⌦

⇢
1

Leading power corrections 
proportional to each other, 
calculable coefficient



Mass Effects in SCET [VM, I. W. Stewart, J. Thaler] PRD87 (2013) 013025

e(N) =
1

Q

X

i2N

m?
i fe(ri, yi) One has to generalize the transverse energy flow operator

y =

1

2

log

⇣E + pz
E � pz

⌘

r ⌘ p?

m?

m? =
q

p2T +m2

⌘ = ln

 p
r2 + sinh2 y + sinh y

r

!

v =

p
r2 + sinh

2 y

cosh y

rapidity

transverse velocity

transverse mass

pseudo-rapidity

velocity

All event shapes can be 
expressed	


in terms of these 	

two variables

m? = p?

v = r = 1

massless limit y = ⌘

)



Mass Effects in SCET

t̂

δηδvÊT (r, y)

η(r, y)
v(r, y)

e(N) =
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Q
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ET (r, y)|N i =
X
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m?
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v = v(r, y)

⌘ = ⌘(r, y)

ET (v, ⌘) = � v(1� v2tanh2y)
3
2

cosh ⌘
lim

R!1
R3

Z 2⇡

0
d� n̂i T0i(R, v R n̂)

measures momenta of particles with given 
transverse velocity flowing at a given rapidity

Transverse velocity operator

One has to generalize the transverse energy flow operator

ê =
1

Q

Z
dy dr ET (r, y)fe(r, y)

[VM, I. W. Stewart, J. Thaler] PRD87 (2013) 013025

ˆ

ê |N i = e(N) |N i
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Q

X

i2N

m?
i fe(ri, yi) One has to generalize the transverse energy flow operator

Mass Effects in SCET [VM, I. W. Stewart, J. Thaler] PRD87 (2013) 013025
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m?
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Mass Effects in SCET [VM, I. W. Stewart, J. Thaler] PRD87 (2013) 013025



Boost invariance requires this 
term is y-independent

e(N) =
1

Q

X

i2N

m?
i fe(ri, yi) One has to generalize the transverse energy flow operator

Mass Effects in SCET

Operator definition of power correction

“Universality” coefficient

⌦e
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Z
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†
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†
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Z
dr ge(r)⌦1(r)

ce =

Z 1

�1
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ge(r) =
1
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Z
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encodes all mass effects
each         defines a universality class 

of events with same power correction
ge(r)

⌦1(r) = h 0 |Y †
n̄Y

†
nET (r, 0)YnY n̄ | 0 i

[VM, I. W. Stewart, J. Thaler] PRD87 (2013) 013025



Event shapes considered

Same color means same power correction
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Event shapes considered
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Scheme changes	
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Event shapes considered

Thrust	


Jet Masses	


C-parameter	


Angularities	


2-Jettiness

Scheme changes	

event shape definition

E-scheme
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Thrust



Theoretical knowledge

Jn(s, µ)
Jet function known at two loops 
Running known at three loops 

H(Q,µ) Hard function known at 3 loops

S⌧ (`, µ)
Soft function known at two loops 
Running known at three loops 

Fixed-order predictions known at three loops

Mass corrections known at N2LL and two loops



determination: Thrust tail fits↵s

[Abbate, Fickinger, Hoang, VM	

Stewart 1006.3080]

N3LL resummation, NNLO matrix elements	

Fits to Q > 34 GeV, global fit	

Thrust analysis only	

Power corrections OPE	

QED and bottom mass effects, axial singlet contribution	

Renormalon subtraction

τ
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for & !

Q=mZ

Reproduce experimental data very accurately



↵s(mZ) = 0.1135± 0.0011

determination: Thrust tail fits↵s

[Abbate, Fickinger, Hoang, VM	

Stewart 1006.3080]

N3LL resummation, NNLO matrix elements	

Fits to Q > 34 GeV, global fit	

Thrust analysis only	

Power corrections OPE	

QED and bottom mass effects, axial singlet contribution	

Renormalon subtraction

1.0

1.5

2.0

2.5

0.110 0.115 0.120 0.125 0.130

full
results

2

dof

N LL3 ’
N LL3

NNLL

NNLL
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0.115

0.120
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Αs!mZ"

Αs!mZ" from global thrust fits
" # perturbative error

O!Αs3" fixed$order
Dissertori et al
0.1274 " 0.0042

0.1300 " 0.0047

% N LL3

summation
0.1194 " 0.0028

B & S
0.1172 " 0.0012

% multijet boundary
0.1245 " 0.0034

% Power Corrections
0.1152 " 0.0021 % R$scheme

0.1140 " 0.0009 % b$mass & QED
0.1135 " 0.0009

All errors: Αs!mZ " & 0.1135 " 0.0012



↵s(mZ) = 0.1135± 0.0011

determination: Thrust tail fits↵s

[Abbate, Fickinger, Hoang, VM	

Stewart 1006.3080]

N3LL resummation, NNLO matrix elements	

Fits to Q > 34 GeV, global fit	

Thrust analysis only	

Power corrections OPE	

QED and bottom mass effects, axial singlet contribution	

Renormalon subtraction

error includes conservative estimates of 
effects coming from higher order power 

corrections not included in the fit
(



determination: Thrust moment fits↵s

[Abbate, Fickinger, Hoang, VM, Stewart]

Only first moment of thrust	

Used N3LL code, with power corrections and renormalon subtraction	

Different levels of theoretical sophistication
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determination: Thrust moment fits↵s

[Abbate, Fickinger, Hoang, VM, Stewart]

Only first moment of thrust	

Used N3LL code, with power corrections and renormalon subtraction	

Different levels of theoretical sophistication
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0.125

0.130

0.135
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asHmZL from global first moment thrust fits

± Æ perturbative error

± Æ perturbative error

All errors: asHmZL = 0.1140 ± 0.0016
OHas3L fixed-order
0.1299 ± 0.0038

+ N3LL summation
0.1245 ± 0.0038

+ Power Correction
0.1156 ± 0.0021

+ R-scheme
0.1142 ± 0.0007 + b-mass & QED

0.1140 ± 0.0007

Mn =
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�

Z
d⌧ ⌧n
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[Abbate, Fickinger, Hoang, VM, Stewart]

Only first moment of thrust	

Used N3LL code, with power corrections and renormalon subtraction	

Different levels of theoretical sophistication	

Significant error reduction when renormalon is removed

0.110 0.115 0.120 0.125 0.1300.4

0.6

0.8

1.0

1.2

1.4

asHmZL

2W1HGeVL
full results

N3LL

N2LL
NLL

0.110 0.115 0.120 0.125 0.1300.4

0.6

0.8

1.0

1.2

1.4

asHmZL

2W1HGeVL
without renormalon subtractions

N3LL

N2LL
NLL

determination: Thrust moment fits↵s
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[Abbate, Fickinger, Hoang, VM, Stewart]

Only first moment of thrust	

Used N3LL code, with power corrections and renormalon subtraction	

Different levels of theoretical sophistication	

Significant error reduction when renormalon is removed
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Good agreement 
with tail fits

determination: Thrust moment fits↵s
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Consequences for ILC



determination:  adding ILC data↵s
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   For increasing Q 
!
• Peak moves toward smaller	

• Events tend to accumulate at 
very small    region	

• The tail regions becomes longer 
but less populated 



determination:  adding ILC data↵s

   For increasing Q 
!
• Size of nonperturbative effects 
decreases with Q	

• They scale as 1/Q.	

• At very high Q, nonperturbative 
effects become smaller than expt. 
errors may be neglected	
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1.00!
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determination:  adding ILC data↵s

Simple exercise: make up ILC data at 500 GeV

Assume 1% statistical and 1% systematic errors

Add this “ILC” data to LEP and other colliders data

Repeat fits

Unfortunately there is 
not much gain…

0.1125 0.1130 0.1135 0.1140 0.1145 0.1150 0.1155
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0.60

0.65

0.70
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asHmZ L

2W1HGeVL LEP + others
LEP + ILC + others



C-parameter



Theoretical knowledge

Jn(s, µ) Jet function: same as thrust

H(Q,µ) Hard function: same as thrust

Soft function known analytically at one 
loop, numerically at two loops 
Running known at three loops 

Fixed-order predictions known at three loops

Mass corrections known at N2LL and two loops

SC(`, µ)



determination: C-parameter tail fits↵s

Analytic computation 
of soft function at 
1-loop
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Numerical determination at 2-loops



determination: C-parameter tail fits↵s
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determination: C-parameter tail fits↵s

↵s(mZ) = 0.1133± 0.0016

Preliminary results



Heavy Jet Mass



Theoretical knowledge

Jn(s, µ) Jet function: same as thrust

H(Q,µ) Hard function: same as thrust

Soft function known analytically at two 
loops. Complicated non-global structure 
Running known at three loops 

Fixed-order predictions known at three loops

Mass corrections known at N2LL and two loops

S(`1, `2, µ)



Factorization Theorem
1

�0

d2�

ds1ds2
= H(Q2, µ)

Z
dk1 dk2 J(s1 �Qk1, µ) J(s2 �Qk2, µ)S(k1, k2, µ)



Factorization Theorem
1

�0

d2�

ds1ds2
= H(Q2, µ)

Z
dk1 dk2 J(s1 �Qk1, µ) J(s2 �Qk2, µ)S(k1, k2, µ)

double convolution



Factorization Theorem
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d2�

ds1ds2
= H(Q2, µ)

Z
dk1 dk2 J(s1 �Qk1, µ) J(s2 �Qk2, µ)S(k1, k2, µ)

two-dimensional soft function

S(`1, `2, µ) =

Z
dk1 dk2 S

part(`1 � k1, `2 � k2, µ)F (k1, k2)



Factorization Theorem
1

�0

d2�

ds1ds2
= H(Q2, µ)

Z
dk1 dk2 J(s1 �Qk1, µ) J(s2 �Qk2, µ)S(k1, k2, µ)

two-dimensional soft function

S(`1, `2, µ) =

Z
dk1 dk2 S

part(`1 � k1, `2 � k2, µ)F (k1, k2)

two dimensional 
non-perturbative 
shape function

two dimensional 
perturbative soft 
function



Factorization Theorem
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= H(Q2, µ)
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two-dimensional soft function
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Z
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Heavy Jet Mass projection
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d�

d⇢
= 2Q2

Z Q2⇢

0
ds1

✓
d�

ds1ds2

◆

s2=Q2⇢

Heavy Jet Mass projection
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Factorization Theorem
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Heavy Jet Mass projection
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Operator Product Expansion
⌦i =

Z
dk1dk2 (k1)

iF (k1, k2) Thrust power corrections



Operator Product Expansion
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Thrust power corrections

HJM power corrections
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Operator Product Expansion
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Operator Product Expansion
⌦i =

Z
dk1dk2 (k1)

iF (k1, k2)

⌦i,j = ⌦j,i =

Z
dk1dk2 (k1)

i (k2)
j F (k1, k2)

⌥i,j =

Z 1

0
dk1dk2 (k1 � k2) ✓(k1 � k2)(k1)

i(k2)
j F (k1, k2)

Thrust power corrections

HJM power corrections

HJM moment 
power corrections

d�

d⇢
=

d�̂

d⇢
� ⌦1,0

Q

d2�̂

d⇢2
+

1

2

⌦2,0

Q2

d3�̂

d⇢3
+ 2

⌦1,1 � ⌦2,0

Q2

✓
Q6 d2�̂

ds1ds2

◆

s1=s2=Q2⇢

Operator product expansion in the tail

Operator product expansion for thrust

d�

d⌧
=

d�̂

d⇢
+

1X

n

(�2)n
⌦n,0

Qn

dn�̂

d⌧n

= 2i ⌦0,i



Operator Product Expansion
⌦i =

Z
dk1dk2 (k1)

iF (k1, k2)

⌦i,j = ⌦j,i =

Z
dk1dk2 (k1)

i (k2)
j F (k1, k2)

⌥i,j =

Z 1

0
dk1dk2 (k1 � k2) ✓(k1 � k2)(k1)

i(k2)
j F (k1, k2)

Thrust power corrections

HJM power corrections

HJM moment 
power corrections

d�

d⇢
=

d�̂

d⇢
� ⌦1,0

Q

d2�̂

d⇢2
+

1

2

⌦2,0

Q2

d3�̂

d⇢3
+ 2

⌦1,1 � ⌦2,0

Q2

✓
Q6 d2�̂

ds1ds2

◆

s1=s2=Q2⇢

Operator product expansion in the tail

Operator product expansion for thrust

d�

d⌧
=

d�̂

d⇢
+

1X

n

(�2)n
⌦n,0

Qn

dn�̂

d⌧n

= 2i ⌦0,i



Operator Product Expansion
⌦i =

Z
dk1dk2 (k1)

iF (k1, k2)

⌦i,j = ⌦j,i =

Z
dk1dk2 (k1)

i (k2)
j F (k1, k2)

⌥i,j =

Z 1

0
dk1dk2 (k1 � k2) ✓(k1 � k2)(k1)

i(k2)
j F (k1, k2)

Thrust power corrections

HJM power corrections

d�

d⇢
=

d�̂

d⇢
� ⌦1,0

Q

d2�̂

d⇢2
+

1

2

⌦2,0

Q2

d3�̂

d⇢3
+ 2

⌦1,1 � ⌦2,0

Q2

✓
Q6 d2�̂

ds1ds2

◆

s1=s2=Q2⇢

non-universal subleading 
power correction

universal* 
leading power 
correction

* modulo hadron mass effects

HJM moment 
power corrections

Operator product expansion in the tail

= 2i ⌦0,i



Operator Product Expansion
⌦i =

Z
dk1dk2 (k1)

iF (k1, k2)

⌦i,j = ⌦j,i =

Z
dk1dk2 (k1)

i (k2)
j F (k1, k2)

⌥i,j =

Z 1

0
dk1dk2 (k1 � k2) ✓(k1 � k2)(k1)

i(k2)
j F (k1, k2)

Thrust power corrections

HJM power corrections

d�

d⇢
=

d�̂

d⇢
� ⌦1,0

Q

d2�̂

d⇢2
+

1

2

⌦2,0

Q2

d3�̂

d⇢3
+ 2

⌦1,1 � ⌦2,0

Q2

✓
Q6 d2�̂

ds1ds2

◆

s1=s2=Q2⇢

Operator product expansion in the tail

HJM moment 
power corrections

Operator product expansion for tree-level moments

M⇢
n,tree =

1

Qn

✓
⌦n,0 +

n�1X

k=0

⌥n�1�k,k

◆

= 2i ⌦0,i



Operator Product Expansion
⌦i =

Z
dk1dk2 (k1)

iF (k1, k2)

⌦i,j = ⌦j,i =

Z
dk1dk2 (k1)

i (k2)
j F (k1, k2)

⌥i,j =

Z 1

0
dk1dk2 (k1 � k2) ✓(k1 � k2)(k1)

i(k2)
j F (k1, k2)

Thrust power corrections

HJM power corrections

d�

d⇢
=

d�̂

d⇢
� ⌦1,0

Q

d2�̂

d⇢2
+

1

2

⌦2,0

Q2

d3�̂

d⇢3
+ 2

⌦1,1 � ⌦2,0

Q2

✓
Q6 d2�̂

ds1ds2

◆

s1=s2=Q2⇢

Operator product expansion in the tail

HJM moment 
power corrections

M⇢
n,tree =

1

Qn

✓
⌦n,0 +

n�1X

k=0

⌥n�1�k,k

◆

Operator product expansion for tree-level moments

these moments do not 
show up in tail OPE !!!

OPE parameters

= 2i ⌦0,i



Oriented Event Shapes



Oriented event shapes
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Oriented event shapes
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General proof:  [VM and G. Rodrigo JHEP11(2013)030]



Oriented event shapes

beam pipe

thrust axis
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Analytic computation at LO

Numerical determination at NLO
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Figure 5. Averaged non-singular and angular distributions at O(↵S). The left top panel (a) shows
the thrust non-singular averaged distribution and the right top panel (b) shows the C-parameter
non-singular averaged distribution. The left bottom panel (c) corresponds to the thrust angular
distribution and the right bottom panel (d) to the C-parameter angular distribution. The solid
line is obtained with an analytical computation, whereas blue dots with tiny error bars are the LO
output of our Event2 runs. The exact definitions of fNS

1 and fang
1 can be found in Eq. (5.1). The

fact that the angular distributions tend to a finite value for ⌧ or C tending to zero discards singular
terms, as predicted by SCET.

4 Angular Dependence to All Orders

As long as electroweak interactions between the initial and the final state are ignored, at
any order (or equivalently for an arbitrary number n of final-state particles) the matrix
element is given by the contraction of a leptonic and a hadronic tensor. The leptonic tensor

– 10 –
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Figure 7. Angular distributions at O(↵2
S). All the color structures with nf = 5 are summed.

The blue dots show the Event2 output, linearly binned to the right of the green dashed line,
and logarithmically binned to the left. The red line corresponds to the determined function. To
the right of the dashed line we use an interpolating function, whereas to the right we use a fit
function. The error band corresponding to the fit function is too small to be visible in this plot.
The panels correspond to thrust (a); Heavy-Jet Mass (b), the sum of the Hemisphere Masses (c)
and C-parameter (d). In panel (d), the black dashed line shows the position of the “shoulder”,
which corresponds to the four-particle threshold. We use a fit function and logarithmically binned
Event2 output between the green and black dashed lines, and an interpolation with linearly binned
Event2 output above the second green line.

in the histograms since for very small values of the event-shape errors are unnaturally large
and central values stop following a natural trend. What one has to do instead is to sum up all
events which produce values of a given event-shape e bigger that a small value emin, and then
extrapolate to emin ! 0. To do that we can use any event-shape. The simplest way is using
a linearly binned histogram, and linearly (or using a higher-degree polynomial) extrapolate
to zero using the last few points. We discard this procedure because the extrapolation is
affected by logarithms [ near zero the sum of bins behaves as Rang

2 +e
P

i log
i
(e) ]. A better

strategy is to use a logarithmically binned histogram. In this case when approaching the
dijet limit, the sum of histograms becomes exponentially close to Rang

2 . It is very simple
to realize that this regimes has been reached, since graphically the distribution becomes
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FIG. 2: Sequence of effective field theories used to compute the top/antitop invariant mass distri-
bution in the peak region.

can freely propagate between the jets. The appropriate EFT for this situation is the Soft-

Collinear Effective Theory (SCET) [25, 26, 27, 28] with a nonzero top quark mass term [29],

which represents an expansion in λ ∼ m/Q ∼ 0.2 − 0.3. The leading order soft-collinear

decoupling [27] properties of SCET allows a factorization of the process into three sectors:

top jet dynamics, antitop jet dynamics, and dynamics of the soft cross talk between the top

and antitop jets, which corresponds quite intuitively to the situation pictured in Fig. 1. In

SCET the typical fluctuation of the jet invariant masses around the top mass are still of

order m, ŝt,t̄ ∼ m. Thus to describe invariant masses in the peak region ŝt,t̄ ∼ Γ the top

and antitop jets are finally computed in Heavy-Quark Effective Theory (HQET) [30] which

represents an expansion ŝ/m and Γ/m ∼ 0.01. We have in fact two copies of HQET, one

for the top and one for the antitop, plus soft interactions between them. In these EFT’s the

top decay can be treated as inclusive and is therefore described by the total top width term

Γ that acts as an imaginary residual mass term [10, 31]. Since HQET is usually understood

as being formulated close to the rest frame of the heavy quark without the soft cross-talk

interactions, we refer to these two EFT’s as boosted HQET’s (bHQET’s).1

At leading order in the expansion in m/Q and Γ/m we show that the double differential

invariant hemisphere mass distribution can be factorized in the form
(

dσ

dM2
t dM2

t̄

)

hemi

= σ0 HQ(Q, µQ, µm)Hm

(

m,
Q

m
, µm, µ

)

(3)

×
∫

dℓ+dℓ−B+

(

ŝt −
Qℓ+

m
, Γ, µ

)

B−

(

ŝt̄ −
Qℓ−

m
, Γ, µ

)

Shemi(ℓ
+, ℓ−, µ) ,

1 We adopt the acronym bHQET in cases where we wish to remind the reader that the residual momentum

components of the heavy quark in the e+e− c.m. frame are not homogeneous, and that additional gluon

interactions occur which are not simply the soft gluons of standard HQET.

6

top or bottom

In the tail of the distribution only jet function is modified at N2LL

When mass of jet very similar to mass of quark there 
appears a new hierarchy along with new large logs log

n

✓
s�m2

m2

◆

One has to match SCET to 
boosted HQET to sum them up

In this way one can also 
treat finite width effects
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Secondary Heavy Quark Production in Jets through Mass Modes

Simon Gritschacher1 and Andre H. Hoang, Ilaria Jemos and Piotr Pietrulewicz2

1Mathematisches Institut, Ludwig-Maximilians-Universität München Theresienstraße 39, 80333 München, Germany
2Fakultät für Physik, Universität Wien, Boltzmanngasse 5, 1090 Vienna, Austria

We present an effective field theory method to determine secondary massive quark effects in jet
production taking the thrust distribution for e+e− collisions in the dijet limit as a concrete example.
The method is based on the field theoretic treatment of collinear and soft mass modes which have to
be separated coherently from the collinear and ultrasoft modes related to massless quarks and gluons.
For thrust the structure of the conceptual setup is closely related to the production of massive gauge
bosons and involves four different effective field theories to describe all possible kinematic situations.
The effective field theories are patched together and allow for a continuous description of infinitely
heavy to arbitrarily small masses keeping the exact mass dependence of the singular terms. The
mass mode field theory method we present here is in the spirit of the variable fermion number
scheme originally proposed by Aivazis, Collins, Olness and Tung and can also be applied in hadron
collisions.

I. INTRODUCTION

By now jet physics has reached a high level of preci-
sion allowing for an accurate description of the strong
interaction. Fundamental parameters of QCD such as
the strong coupling constant as well as nonperturbative
properties of hadrons like parton distribution functions
can be determined with a continuously improved accu-
racy from high precision data samples. On the theo-
retical side this has been possible thanks to high order
loop calculations and the summation of large logarith-
mic terms. Computations of jet cross sections for mass-
less quarks belong to the well known and unambiguously
defined exercises in perturbative QCD based on a num-
ber of rigorous factorization proofs. On the other hand,
as far as massive quarks are concerned it is fair to say
that their treatment is not coherent throughout the lit-
erature. Different schemes for massive quarks exist which
differ in the resummation of logarithms and in the inclu-
sion of formally subleading contributions. An approach
capable of describing quark mass effects starting in prin-
ciple from very small masses when the quarks are inside
hadrons and stretching up to ultra-heavy masses in the
decoupling limit was provided by Aivazis, Collins, Ol-
ness and Tung (ACOT) [1, 2]. Their variable fermion
number scheme is based on the separation of close-to-
mass-shell and off-shell modes and allows to factorize
infrared-safe hard coefficient corrections from low-energy
parton distribution terms involving logarithmic mass ef-
fects. In this respect the concept behind the ACOT
scheme is along the lines of effective field theory methods
such as the soft-collinear effective theory (SCET) frame-
work [3, 4] and can be readily incorporated into it. As we
show in this paper, the resulting effective theory frame-
work can be based on the inclusion of collinear and soft
”mass modes”1 together with the existing collinear and

1 This differs from the terminology used in Refs. [5] and [6] where
only the soft massive modes were referred to as the mass modes.

m m

m

p p

p′ p′

FIG. 1: Diagrams at O(α2
s) for virtual and real secondary

radiation of massive quark pairs in primary massless quark
production.

soft massless partonic modes. While the collinear and
soft massless partonic modes typically have different in-
variant masses depending on the observable under con-
sideration, the collinear and soft mass modes have the
same typical invariant mass. This can lead to compli-
cated patterns of scale hierarchies that might even vary
substantially within a single distribution.

In this and a subsequent paper we apply the mass mode
SCET concept to describe the secondary production of
massive quarks in the e+e− thrust distribution. While we
aim for the description of thrust, the described method
is general and can be applied with possible adaptions
to other processes as well. Recently, a factorization ap-
proach was derived within SCET that can be applied for
thrust induced by primary heavy quarks, i.e. by heavy
quarks that are produced directly from the hard jet cur-
rent [5, 6]. For the description of primary heavy quarks
the mass modes are involved as well, but they play a more
simplistic role since massless collinear modes are directly
tied to the massive collinear modes and soft mass modes
turn out to only lead to virtual effects. So the result-
ing situation is almost identical to the one in massless
SCET. For secondary heavy quark production, i.e. for
heavy quarks produced from gluon radiation off primary
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FIG. 4: Localization of massless (ML) and mass modes (MM) in the p+-p−phase space according to their generic scaling for
different hierarchies between λ and λM . Modes with the same invariant mass are located on the same mass hyperbola. This is
always the case for the collinear and soft mass modes.

A. Scenario I: M > Q > Qλ > Qλ2

The massive gauge boson with vector coupling is inte-
grated out at the hard scale Q, when SCET is matched
to the full theory, yielding just a modification of the hard
matching coefficient. It can be combined with the mass-
less coefficient C0(Q,µ) to give a new Wilson coefficient,
which reads at one loop order

CI(Q,M, µ) = C0(Q,µ) + δFm(M/Q) . (21)

The massive contribution δFm(M/Q) is computed from
the full theory current form factor with a subtraction at
(p + p′)2 = 0 (i.e. in the on-shell scheme which ensures
decoupling) since the mass modes do not contribute to
the SCET renormalization group evolution. At one-loop

order δFm(M/Q) reads [11, 23]

δFm(x) =
αsCF

4π

{

(1 + x2)2
[

2 Li2(−x2)− ln2(−x2)

+2 ln(1 + x2) ln(−x2)−
2π2

3

]

− (3 + 2x2) ln(−x2)− 2x2 −
7

2

}

(22)

with x2 = M2/(Q2 + i0). In the limit M → ∞ the mass
modes decouple, so δFm(x) → 0 for x → ∞. In the small
mass limit x → 0 (which is not supposed to be taken in
this scenario), on the other hand, we obtain

δFm(x)
x→0−→ −

αsCF

4π

[

ln2(−x2) + 3 ln(−x2) +
2π2

3
+

7

2

]

,

(23)
which yields unresummed large logarithms. Thus in sce-
nario I the correct massless limit cannot be obtained in
the hard Wilson coefficient. Since the SCET setup in
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Conclusions
Precision measurements with jets are essential. 

Event Shapes are an ideal tool, great theoretical 

properties. 

Understanding power corrections mandatory for 

accurate theoretical predictions. Hadron mass effects 

cannot be neglected. 

C-parameter and HJM results on the way 

Oriented event shapes give extra handle on jets. 

Paving the way for precision top mass determination!


