LHCphenonet

Recent Developments in Evenk-Shapes

Vicent Mateu
IFIC - Valencia
LCWS1z Tokyo (Japan) 12-11-2013

Outline

- Introduction
- Power corrections \& Hadron Mass Effects
- Thrust, C-parameter and Heavy Jet Mass
- Consequences for an ILC
- Oriented Event Shapes
- Massive Event Shapes
- Conclusions and Outlook

Ineroduction

Jets are essential to high-precision determination of α_{s} and the top mass

asymptotic freedom

See balk of G. Luisoni and J. Mackenzie for update on recent determinations

Jets are essential to high-precision determination of α_{s} and the top mass

Top is by far the heaviest quark Its mass usually determined by reconstruction Short distance scheme to achieve high precision Jet physics play an essential role in achieving this goal

See kalk by A. Hoang for top mass measurements at the ILC and LHC

Jet formation and evolution

center of mass energy
 $Q=E_{e^{+}}+E_{e^{-}}$

Electron and positron collide at very high energy

Jet formation and evolution

primary quarks are created

At very short distance the hard interaction occurs

Jet formation and evolution

primary quarks are created

Described by hard function

Hard collision
 typical scale $\mu_{h} \sim Q$

At very short distance the hard interaction occurs

Jet formation and evolution

Radiating a central, energetic gluon is suppressed by $\alpha_{s}(Q)$ and also power suppressed

We will call these contributions nonsingular

Hard, central gluon

Creating a third jet is very unlikely

Jet formation and evolution

At longer distances collinear radiation off quarks occur

Jet formation and evolution

At long distance, large angle soft gluons are emitted

Jet formation and evolution

Purely nonperturbative effect

Described by the shape function

hadronization scale $\mu_{\Lambda} \sim \Lambda_{\mathrm{QCD}}$

At very long distances hadronization takes place

Even Shapes

SH^PES

Event Shapes

Event shapes characterize in a geometrical way the distribution of

$$
e^{+} e^{-} \rightarrow \text { jets }
$$

hadrons in the final state

Thrust $\quad \tau=1-\max _{\hat{n}} \frac{\sum\left|\vec{p}_{i} \cdot \hat{n}\right|}{\sum\left|\vec{p}_{i}\right|}$
They are theoretically more friendly than a Jet algorithm

$$
\begin{array}{ll}
\text { dijet } & \tau \sim 0 \\
\text { three jets } & \tau \sim 0.3 \\
\text { spherical } & \tau \sim 0.5
\end{array}
$$

Continuous transition from 2-jet to 3-jet, ... multi-jet events

Most common Event shapes

- Thrust

$$
\begin{equation*}
\tau=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{\sum\left|\vec{p}_{i}\right|} \tag{E.Farhi}
\end{equation*}
$$

- Angularities $\tau_{(a)}=\frac{1}{Q} \sum_{i} E_{i}\left(\sin \theta_{i}\right)^{a}\left(1-\left|\cos \theta_{i}\right|\right)^{1-a}$ [Berger, Kucs, Sterman]
- Jet Masses

$$
\rho_{ \pm}=\frac{1}{Q^{2}}\left(\sum_{i \in \pm} p_{i}\right)^{2}
$$

[Clavelli]
[Chandramohan Clavelli]

- Jet Broadening

$$
B=\frac{\sum_{i}\left|\vec{p}_{i} \times \vec{n}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}
$$

[Catani, Turnock, Webber]

- C-parameter

$$
C=\frac{3}{2} \frac{\sum_{i, j}\left|\vec{p}_{i}\right|\left|\vec{p}_{j}\right| \sin ^{2}\left(\theta_{i j}\right)}{\left(\sum_{i}\left|\vec{p}_{i}\right|\right)^{2}}
$$

[Parisi]
[Donoghue, Low, Pi]

- 2-Jettiness

$$
\tau_{2}=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{Q}
$$

[Stewart, Tackmann, Waalewijn]

Most common Event shapes

- Thrust

$$
\tau=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{\sum\left|\vec{p}_{i}\right|}
$$

- Angularities $\quad \tau_{(a)}=\frac{1}{Q} \sum_{i} E_{i}\left(\sin \theta_{i}\right)^{a}\left(1-\left|\cos \theta_{i}\right|\right)^{1-a}$
- Jet Masses

$$
\rho_{ \pm}=\frac{1}{Q^{2}}\left(\sum_{i \in \pm} p_{i}\right)^{2}
$$

2-jet event shapes

$e \rightarrow 0$

$$
B=\frac{\sum_{i}\left|\vec{p}_{i} \times \vec{n}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}
$$

- C-parameter

$$
C=\frac{3}{2} \frac{\sum_{i, j}\left|\vec{p}_{i}\right|\left|\vec{p}_{j}\right| \sin ^{2}\left(\theta_{i j}\right)}{\left(\sum_{i}\left|\vec{p}_{i}\right|\right)^{2}}
$$

- 2-Jettiness

$$
\tau_{2}=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{Q}
$$

Most common Event shapes

- Thrust

$$
\tau=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{\sum\left|\vec{p}_{i}\right|}
$$

- Angularities $\quad \tau_{(a)}=\frac{1}{Q} \sum_{i} E_{i}\left(\sin \theta_{i}\right)^{a}\left(1-\left|\cos \theta_{i}\right|\right)^{1-a}$

Depend on a continuous parameter

- Jet Masses

$$
\rho_{ \pm}=\frac{1}{Q^{2}}\left(\sum_{i \in \pm} p_{i}\right)^{2}
$$

- Jet Broadening

$$
B=\frac{\sum_{i}\left|\vec{p}_{i} \times \vec{n}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}
$$

- C-parameter

$$
C=\frac{3}{2} \frac{\sum_{i, j}\left|\vec{p}_{i}\right|\left|\vec{p}_{j}\right| \sin ^{2}\left(\theta_{i j}\right)}{\left(\sum_{i}\left|\vec{p}_{i}\right|\right)^{2}}
$$

- 2-Jettiness

$$
\tau_{2}=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{Q}
$$

Most common Event shapes

- Thrust

$$
\tau=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{\sum\left|\vec{p}_{i}\right|}
$$

- Angularities $\quad \tau_{(a)}=\frac{1}{Q} \sum_{i} E_{i}\left(\sin \theta_{i}\right)^{a}\left(1-\left|\cos \theta_{i}\right|\right)^{1-a}$
- Jet Masses

$$
\rho_{ \pm}=\frac{1}{Q^{2}}\left(\sum_{i \in \pm} p_{i}\right)^{2}
$$

- Jet Broadening $\quad B=\frac{\sum_{i}\left|\vec{p}_{i} \times \vec{n}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}$

Recoil sensitive

- C-parameter

$$
C=\frac{3}{2} \frac{\sum_{i, j}\left|\vec{p}_{i}\right|\left|\vec{p}_{j}\right| \sin ^{2}\left(\theta_{i j}\right)}{\left(\sum_{i}\left|\vec{p}_{i}\right|\right)^{2}}
$$

- 2-Jettiness

$$
\tau_{2}=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{Q}
$$

Most common Event shapes

- Thrust

$$
\tau=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{\sum\left|\vec{p}_{i}\right|}
$$

- Angularities $\quad \tau_{(a)}=\frac{1}{Q} \sum_{i} E_{i}\left(\sin \theta_{i}\right)^{a}\left(1-\left|\cos \theta_{i}\right|\right)^{1-a}$
- Jet Masses

$$
\rho_{ \pm}=\frac{1}{Q^{2}}\left(\sum_{i \in \pm} p_{i}\right)^{2}
$$

- Jet Broadening $\quad B=\frac{\sum_{i}\left|\vec{p}_{i} \times \vec{n}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}$
- C-parameter

$$
C=\frac{3}{2} \frac{\sum_{i, j}\left|\vec{p}_{i}\right|\left|\vec{p}_{j}\right| \sin ^{2}\left(\theta_{i j}\right)}{\left(\sum_{i}\left|\vec{p}_{i}\right|\right)^{2}}
$$

does not require minimization procedure

- 2-Jettiness

$$
\tau_{2}=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{Q}
$$

Most common Event shapes

- Thrust

$$
\tau=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{\sum\left|\vec{p}_{i}\right|}
$$

- Angularities $\quad \tau_{(a)}=\frac{1}{Q} \sum_{i} E_{i}\left(\sin \theta_{i}\right)^{a}\left(1-\left|\cos \theta_{i}\right|\right)^{1-a}$
- Jet Masses $\quad \rho_{ \pm}=\frac{1}{Q^{2}}\left(\sum_{i \in \pm} p_{i}\right)^{2}$

Will show fits for α_{s}
there is no data
α_{s} fits are work in progress

- Jet Broadening $\quad B=\frac{\sum_{i}\left|\vec{p}_{i} \times \vec{n}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}$
- C-parameter

$$
C=\frac{3}{2} \frac{\sum_{i, j}\left|\vec{p}_{i}\right|\left|\vec{p}_{j}\right| \sin ^{2}\left(\theta_{i j}\right)}{\left(\sum_{i}\left|\vec{p}_{i}\right|\right)^{2}}
$$

- 2-Jettiness

$$
\tau_{2}=1-\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{Q}
$$

Will show fits for α_{s}
there is no data

Resummation of large logarithms

Event shapes are not inclusive quantities

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}=-\frac{2 \alpha_{s}}{3 \pi} \frac{1}{\tau}(3+4 \log \tau+\ldots)
$$

Large logs at small T
Invalidates perturbative expression for small

One has to reorganize the expansion by considering

$$
\alpha_{s} \lg (\tau) \sim \mathcal{O}(1)
$$

Resummation of large logarithms

Event shapes are not inclusive quantities

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}=-\frac{2 \alpha_{s}}{3 \pi} \frac{1}{\tau}(3+4 \log \tau+\ldots)
$$ expression for small

One has to reorganize the expansion by considering $\quad \alpha_{s} \lg (\tau) \sim \mathcal{O}(1)$
Counting more clear in the exponent of cumulant

$$
\Sigma\left(\tau_{c}\right) \equiv \int_{0}^{\tau_{c}} \mathrm{~d} \tau \frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}
$$

$\log \Sigma\left(\tau_{c}\right)=\alpha_{s}\left(\log ^{2} \tau_{c}+\log \tau_{c}+1\right)$
$\alpha_{s}^{2}\left(\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)$
$\alpha_{s}^{3}\left(\log ^{4} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)$
$\alpha_{s}^{4}\left(\log ^{5} \tau_{c}+\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)$
...

Resummation of large logarithms

Event shapes are not inclusive quantities

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}=-\frac{2 \alpha_{s}}{3 \pi} \frac{1}{\tau}(3+4 \log \tau+\ldots)
$$

Large logs at small T
Invalidates perturbative expression for small

One has to reorganize the expansion by considering $\quad \alpha_{s} \lg (\tau) \sim \mathcal{O}(1)$
Counting more clear in the exponent of cumulant

$$
\Sigma\left(\tau_{c}\right) \equiv \int_{0}^{\tau_{c}} \mathrm{~d} \tau \frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}
$$

$\log \Sigma\left(\tau_{c}\right)=\alpha_{s}\left(\log ^{2} \tau_{c}+\log \tau_{c}+1\right)$

$$
\alpha_{s}^{2}\left(\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

$$
\alpha_{s}^{3}\left(\log ^{4} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

$$
\alpha_{s}^{4}\left(\log ^{5} \tau_{c}+\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

...

Resummation of large logarithms

Event shapes are not inclusive quantities

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}=-\frac{2 \alpha_{s}}{3 \pi} \frac{1}{\tau}(3+4 \log \tau+\ldots)
$$

Large logs at small T
Invalidates perturbative expression for small

One has to reorganize the expansion by considering $\quad \alpha_{s} \lg (\tau) \sim \mathcal{O}(1)$
Counting more clear in the exponent of cumulant

$$
\Sigma\left(\tau_{c}\right) \equiv \int_{0}^{\tau_{c}} \mathrm{~d} \tau \frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}
$$

$$
\begin{aligned}
\log \Sigma\left(\tau_{c}\right)= & \alpha_{s}\left(\log ^{2} \tau_{c}+\log \tau_{c}+1\right) \\
& \alpha_{s}^{2}\left(\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right) \\
& \alpha_{s}^{3}\left(\log ^{4} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right) \\
& \alpha_{s}^{4}\left(\log ^{5} \tau_{c}+\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
\end{aligned}
$$

Resummation of large logarithms

Event shapes are not inclusive quantities

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}=-\frac{2 \alpha_{s}}{3 \pi} \frac{1}{\tau}(3+4 \log \tau+\ldots)
$$

Large logs at small T
Invalidates perturbative expression for small

One has to reorganize the expansion by considering $\quad \alpha_{s} \lg (\tau) \sim \mathcal{O}(1)$
Counting more clear in the exponent of cumulant

$$
\Sigma\left(\tau_{c}\right) \equiv \int_{0}^{\tau_{c}} \mathrm{~d} \tau \frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}
$$

$$
\log \Sigma\left(\tau_{c}\right)=\alpha_{s}\left(\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

LO

$$
\alpha_{s}^{2}\left(\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

$$
\alpha_{s}^{3}\left(\log ^{4} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

NNLO

$$
\alpha_{s}^{4}\left(\log ^{5} \tau_{c}+\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

Resummation of large logarithms

Event shapes are not inclusive quantities

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}=-\frac{2 \alpha_{s}}{3 \pi} \frac{1}{\tau}(3+4 \log \tau+\ldots)
$$

Large logs at small T
Invalidates perturbative expression for small

One has to reorganize the expansion by considering $\quad \alpha_{s} \lg (\tau) \sim \mathcal{O}(1)$

$$
\begin{gathered}
\text { Counting more clear in the } \\
\text { exponent of cumulant }
\end{gathered} \Sigma\left(\tau_{c}\right) \equiv \int_{0}^{\tau_{c}} \mathrm{~d} \tau \frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}
$$

$$
\log \Sigma\left(\tau_{c}\right)=\alpha_{s}\left(\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

[Catani, Seymour] $\alpha_{s}^{2}\left(\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)$
State of the art $\alpha_{s}^{3}\left(\log ^{4} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)$

$$
\alpha_{s}^{4}\left(\log ^{5} \tau_{c}+\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

[Weinzierl]
[Gehrmann-De Rider, Gehrmann, Glover, Heinrich]

Resummation of large logarithms

Event shapes are not inclusive quantities

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}=-\frac{2 \alpha_{s}}{3 \pi} \frac{1}{\tau}(3+4 \log \tau+\ldots)
$$

Large logs at small T
Invalidates perturbative expression for small

One has to reorganize the expansion by considering $\quad \alpha_{s} \lg (\tau) \sim \mathcal{O}(1)$
Counting more clear in the exponent of cumulant

$$
\Sigma\left(\tau_{c}\right) \equiv \int_{0}^{\tau_{c}} \mathrm{~d} \tau \frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}
$$

$$
\log \Sigma\left(\tau_{c}\right)=\alpha_{s}\left(\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

$$
\alpha_{s}^{2}\left(\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

$$
\alpha_{s}^{3}\left(\log ^{4} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

$$
\alpha_{s}^{4}\left(\log ^{5} \tau_{c}+\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

Resummation of large logarithms

Event shapes are not inclusive quantities

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}=-\frac{2 \alpha_{s}}{3 \pi} \frac{1}{\tau}(3+4 \log \tau+\ldots)
$$

Large logs at small T
Invalidates perturbative expression for small

One has to reorganize the expansion by considering $\quad \alpha_{s} \lg (\tau) \sim \mathcal{O}(1)$

$$
\begin{aligned}
& \text { Counting more clear in the } \\
& \text { exponent of cumulant }
\end{aligned} \quad \Sigma\left(\tau_{c}\right) \equiv \int_{0}^{\tau_{c}} \mathrm{~d} \tau \frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}
$$

$$
\begin{aligned}
\log \Sigma\left(\tau_{c}\right)= & \alpha_{s}\left(\log ^{2} \tau_{c}+\log \tau_{c}+1\right) \\
& \alpha_{s}^{2}\left(\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right) \\
& \alpha_{s}^{3}\left(\log ^{4} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right) \\
& \alpha_{s}^{4}\left(\log ^{5} \tau_{c}+\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
\end{aligned}
$$

LL NLL

Resummation of large logarithms

Event shapes are not inclusive quantities

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}=-\frac{2 \alpha_{s}}{3 \pi} \frac{1}{\tau}(3+4 \log \tau+\ldots)
$$

Large logs at small T
Invalidates perturbative expression for small

One has to reorganize the expansion by considering $\quad \alpha_{s} \lg (\tau) \sim \mathcal{O}(1)$

$$
\begin{gathered}
\text { Counting more clear in the } \\
\text { exponent of cumulant }
\end{gathered} \quad \Sigma\left(\tau_{c}\right) \equiv \int_{0}^{\tau_{c}} \mathrm{~d} \tau \frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}
$$

$$
\begin{aligned}
& \log \Sigma\left(\tau_{c}\right)= \alpha_{s}\left(\log ^{2} \tau_{c}+\log \tau_{c}+1\right) \\
& \alpha_{s}^{2}\left(\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right) \\
& \alpha_{s}^{3}\left(\log ^{4} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right) \\
& \alpha_{s}^{4}\left(\log ^{5} \tau_{c}+\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right) \\
& \vdots \vdots \\
& \text { LL } \text { NLL NLL }
\end{aligned}
$$

Resummation of large logarithms

Event shapes are not inclusive quantities

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}=-\frac{2 \alpha_{s}}{3 \pi} \frac{1}{\tau}(3+4 \log \tau+\ldots)
$$

Large logs at small T
Invalidates perturbative expression for small

One has to reorganize the expansion by considering $\quad \alpha_{s} \lg (\tau) \sim \mathcal{O}(1)$
Counting more clear in the exponent of cumulant

$$
\Sigma\left(\tau_{c}\right) \equiv \int_{0}^{\tau_{c}} \mathrm{~d} \tau \frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}
$$

$$
\log \Sigma\left(\tau_{c}\right)=\alpha_{s}\left(\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

$$
\alpha_{s}^{2}\left(\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

$$
\alpha_{s}^{3}\left(\log ^{4} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

$$
\alpha_{s}^{4}\left(\log ^{5} \tau_{c}+\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

Resummation of large logarithms

Event shapes are not inclusive quantities

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}=-\frac{2 \alpha_{s}}{3 \pi} \frac{1}{\tau}(3+4 \log \tau+\ldots)
$$

Large logs at small T
Invalidates perturbative expression for small

One has to reorganize the expansion by considering $\quad \alpha_{s} \lg (\tau) \sim \mathcal{O}(1)$
Counting more clear in the exponent of cumulant

$$
\Sigma\left(\tau_{c}\right) \equiv \int_{0}^{\tau_{c}} \mathrm{~d} \tau \frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}
$$

$$
\log \Sigma\left(\tau_{c}\right)=\alpha_{s}\left(\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

$$
\alpha_{s}^{2}\left(\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

$$
\alpha_{s}^{3}\left(\log ^{4} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

$$
\alpha_{s}^{4}\left(\log ^{5} \tau_{c}+\log ^{3} \tau_{c}+\log ^{2} \tau_{c}+\log ^{2} \tau_{c}+\log \tau_{c}+1\right)
$$

Factorization

Factorization theorem for event shapes but csis scouvivent

Factorization theorem for event shapes $\begin{gathered}\text { (Will focus on SCET } \\ \text { but } \operatorname{CSS} \text { is equivelent) }\end{gathered}$

Perturbative and
Calculable in perturbation theory nonperturbative components

$$
S_{e}(e)=\underset{ }{\langle 0|} \underset{\substack{\text { Soft Wilson lines }}}{\dagger} \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \delta(\ell-Q \hat{e}) Y_{n} \bar{Y}_{\bar{n}}|0\rangle \quad \begin{aligned}
& \text { Leading power correction } \\
& \text { comes from soft function }
\end{aligned}
$$

Factorization theorem for event shapes $\begin{gathered}\text { (Will focus on SCET } \\ \text { but } \operatorname{CSS} \text { is equivelent) }\end{gathered}$

Perturbative and
Calculable in perturbation theory nonperturbative components

Factorization theorem for event shapes $\begin{gathered}\text { Will focus on SCET } \\ \text { but } \operatorname{CSS} \text { is equivalent) }\end{gathered}$

Perturbative and
Calculable in perturbation theory nonperturbative components

Heavy Jet Mass is slightly more complicated than this
(more on this Later)

Large log

Resummation

Renormalization group evolution

hard scale

$$
\mu_{H} \sim Q \quad \log ^{n}\left(\frac{Q}{\mu}\right)
$$

The hierarchy among the scales depends
jet scale

$$
\mu_{J} \sim Q \sqrt{\tau}
$$

$\log ^{n}\left(\frac{Q^{2} \tau}{\mu^{2}}\right)$ on the position on the spectrum

$$
\begin{array}{rr}
\text { soft scale } & \mu_{S} \sim Q \tau \\
\hline \Lambda_{\mathrm{QCD}} \\
\hline
\end{array}
$$

large logs

Renormalization group evolution

Renormalization group evolution

Renormalization group evolution

Power Corrections

OPE for non-perturbative corrections

$$
S_{e}(e)=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \delta(\ell-Q \hat{e}) Y_{n} \bar{Y}_{\bar{n}}|0\rangle \quad[\text { Lee \& Sterman }]
$$

For $\quad e \gg \frac{\Lambda_{\mathrm{QCD}}}{Q}$

$$
\delta(\ell-Q \hat{e}) \simeq \delta(\ell)-\delta^{\prime}(\ell) Q \hat{e}+\ldots
$$

Correct up to $\mathcal{O}\left(\alpha_{s}\right)$

Shape function can be

$$
\begin{aligned}
& F_{e}(\ell) \simeq \delta(\ell)-\Omega_{1} \delta^{\prime}(\ell) \\
& \Omega_{1}=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} Q e \hat{e} Y_{n} \bar{Y}_{\bar{n}}|0\rangle
\end{aligned}
$$

OPE for non-perturbative corrections

$$
S_{e}(e)=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \delta(\ell-Q \hat{e}) Y_{n} \bar{Y}_{\bar{n}}|0\rangle \quad \text { [Lee \& Sterman] }
$$

For $\quad e \gg \frac{\Lambda_{\mathrm{QCD}}}{Q}$

$$
\delta(\ell-Q \hat{e}) \simeq \delta(\ell)-\delta^{\prime}(\ell) Q \hat{e}+\ldots
$$

Correct up to $\mathcal{O}\left(\alpha_{s}\right)$

Shape function can be

$$
\begin{aligned}
& F_{e}(\ell) \simeq \delta(\ell)-\Omega_{1} \delta^{\prime}(\ell) \\
& \Omega_{1}=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} Q \hat{e} Y_{n} \bar{Y}_{\bar{n}}|0\rangle
\end{aligned}
$$

expanded in the tail

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} e}=\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} e}-\frac{\Omega_{1}}{Q} \frac{\mathrm{~d}}{\mathrm{~d} e} \frac{\mathrm{~d} \hat{\sigma}}{\mathrm{~d} e} \simeq \frac{\mathrm{~d} \hat{\sigma}}{\mathrm{de}}\left(e-\frac{\Omega_{1}}{Q}\right)+\mathcal{O}\left[\left(\frac{\Lambda_{\mathrm{QCD}}}{Q e}\right)^{2}\right]
$$

Universality:

$$
\Omega_{1}^{e}=c_{e} \Omega_{1}^{\rho}
$$

Leading power corrections proportional to each other, calculable coefficient

Mass Effects in SCET

$e(N)=\frac{1}{Q} \sum_{i \in N} m_{i}^{\perp} f_{e}\left(r_{i}, y_{i}\right) \quad$ One has to generalize the transverse energy flow operator

$$
\begin{array}{rlr}
y & =\frac{1}{2} \log \left(\frac{E+p_{z}}{E-p_{z}}\right) & \\
r \equiv \frac{p^{\perp}}{m^{\perp}} & \text { rapidity } \\
r \text { transver }
\end{array}
$$

$$
m^{\perp}=\sqrt{p_{T}^{2}+m^{2}}
$$

$$
\eta=\ln \left(\frac{\sqrt{r^{2}+\sinh ^{2} y}+\sinh y}{r}\right)
$$

$$
v=\frac{\sqrt{r^{2}+\sinh ^{2} y}}{\cosh y}
$$

transverse mass

$$
v=r=1
$$

massless limit $\quad y=\eta$
$m^{\perp}=p^{\perp}$

Mass Effects in SCET

$e(N)=\frac{1}{Q} \sum_{i \in N} m_{i}^{\perp} f_{e}\left(r_{i}, y_{i}\right) \quad$ One has to generalize the transverse energy flow operator

Transverse velocity operator $\quad \hat{\mathcal{E}}_{T}(r, y)|N\rangle=\sum_{i \in N} m_{i}^{\perp} \delta\left(r-r_{i}\right) \delta\left(y-y_{i}\right)|N\rangle$

$$
\begin{aligned}
& v=v(r, y) \\
& \eta=\eta(r, y)
\end{aligned}
$$

$$
\hat{e}|N\rangle=e(N)|N\rangle
$$

$$
\mathcal{E}_{T}(v, \eta)=-\frac{v\left(1-v^{2} \tanh ^{2} y\right)^{\frac{3}{2}}}{\cosh \eta} \lim _{R \rightarrow \infty} R^{3} \int_{0}^{2 \pi} \mathrm{~d} \phi \hat{n}_{i} T_{0 i}(R, v R \hat{n})
$$

$e(N)=\frac{1}{Q} \sum_{i \in N} m_{i}^{\perp} f_{e}\left(r_{i}, y_{i}\right) \quad$ One has to generalize the transverse energy flow operator

$$
\Omega_{1}^{e}=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} Q \hat{e} Y_{n} \bar{Y}_{\bar{n}}|0\rangle
$$

Mass Effects in SCET

$e(N)=\frac{1}{Q} \sum_{i \in N} m_{i}^{\perp} f_{e}\left(r_{i}, y_{i}\right) \quad$ One has to generalize the transverse energy flow operator

$$
\Omega_{1}^{e}=\int \mathrm{d} r \mathrm{~d} y f_{e}(r, y)\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \mathcal{E}_{T}(r, y) Y_{n} \bar{Y}_{\bar{n}}|0\rangle
$$

Mass Effects in SCET

$e(N)=\frac{1}{Q} \sum_{i \in N} m_{i}^{\perp} f_{e}\left(r_{i}, y_{i}\right) \quad$ One has to generalize the transverse energy flow operator

$$
\Omega_{1}^{e}=\int \mathrm{d} r \mathrm{~d} y f_{e}(r, y)\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \mathcal{E}_{T}(r, y) Y_{n} \bar{Y}_{\bar{n}}|0\rangle=c_{e} \int \mathrm{~d} r g_{e}(r) \Omega_{1}(r)
$$

Operator definition of power correction $\Omega_{1}(r)=\langle 0| \bar{Y}_{\bar{n}}^{\dagger} Y_{n}^{\dagger} \mathcal{E}_{T}(r, 0) Y_{n} \bar{Y}_{\bar{n}}|0\rangle$
"Universality" coefficient

$$
c_{e}=\int_{-\infty}^{\infty} \mathrm{d} y f_{e}(1, y)
$$

$$
g_{e}(r)=\frac{1}{c_{e}} \int \mathrm{~d} y f_{e}(r, y)
$$

encodes all mass effects

 each $g_{e}(r)$ defines a universality class of events with same power correction
Event shapes considered

Thrust
Jet Masses
C-parameter
Angularities
2-Jettiness
(default definition)

Same color means same power correction

Event shapes considered

Thrust

C-parameter

Scheme changes event shape definition

Event shapes considered

Angularities

Scheme changes event shape definition

Thrust

Theoretical knowledge

$H(Q, \mu)$ Hard function known at 3 loops
$J_{n}(s, \mu)$ Jet function known at two loops Running known at three loops
$S_{\tau}(\ell, \mu)$
Soft function known at two loops Running known at three loops

Fixed-order predictions known at three loops

Mass corrections known at N2LL and two loops

α_{s} determination:Thrust tail fits

[Abbate, Fickinger, Hoang, VM
Stewart I006.3080] $\left\{\begin{array}{l}\mathrm{N}^{3} \text { LL resummation, NNLO matrix elements } \\ \text { Fits to } \mathrm{Q}>34 \mathrm{GeV} \text {, global fit } \\ \text { Thrust analysis only } \\ \text { Power corrections OPE } \\ \text { QED and bottom mass effects, axial singlet contribution } \\ \text { Renormalon subtraction }\end{array}\right.$

Reproduce experimental data very accurately

α_{s} determination:Thrust tail fits

[Abbate, Fickinger, Hoang,VM $\left\{\begin{array}{l}\mathrm{N}^{3} L L \text { resummation, NNLO matrix elements } \\ \text { Fits to } \mathrm{Q}>34 \mathrm{GeV} \text {, global fit } \\ \text { Thrust analysis only } \\ \text { Power corrections OPE } \\ \text { QED and bottom mass effects, axial singlet contribution } \\ \text { Renormalon subtraction }\end{array}\right.$.

$$
\alpha_{s}\left(m_{Z}\right)=0.1135 \pm 0.0011
$$

α_{s} determination:Thrust tail fits
[Abbate, Fickinger, Hoang,VM
Stewart l006.3080] $\left\{\begin{array}{l}N^{3} L L \text { resummation, NNLO matrix elements } \\ \text { Fits to } \mathrm{Q}>34 \mathrm{GeV}, \text { global fit } \\ \text { Thrust analysis only } \\ \text { Power corrections OPE } \\ \text { QED and bottom mass effects, axial singlet contribution } \\ \text { Renormalon subtraction }\end{array}\right.$

$$
\alpha_{s}\left(m_{Z}\right)=0.1135 \pm 0.0011
$$

error includes conservative estimates of effects coming from higher order power corrections not included in the fit

α_{s} determination:Thrust moment fits

[Abbate, Fickinger, Hoang, VM, Stewart]

$$
M_{n}=\frac{1}{\sigma} \int \mathrm{~d} \tau \tau^{n} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}
$$

Only first moment of thrust
Used N^{3} LL code, with power corrections and renormalon subtraction Different levels of theoretical sophistication

α_{s} determination:Thrust moment fits

[Abbate, Fickinger, Hoang, VM, Stewart]

$$
M_{n}=\frac{1}{\sigma} \int \mathrm{~d} \tau \tau^{n} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}
$$

Only first moment of thrust
Used N^{3} LL code, with power corrections and renormalon subtraction Different levels of theoretical sophistication

α_{s} determination:Thrust moment fits

[Abbate, Fickinger, Hoang, VM, Stewart]
Only first moment of thrust

$$
M_{n}=\frac{1}{\sigma} \int \mathrm{~d} \tau \tau^{n} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}
$$

Used N^{3} LL code, with power corrections and renormalon subtraction Different levels of theoretical sophistication
Significant error reduction when renormalon is removed

α_{s} determination:Thrust moment fits

[Abbate, Fickinger, Hoang, VM, Stewart]

$$
M_{n}=\frac{1}{\sigma} \int \mathrm{~d} \tau \tau^{n} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau}
$$

Only first moment of thrust
Used N^{3} LL code, with power corrections and renormalon subtraction Different levels of theoretical sophistication
Significant error reduction when renormalon is removed

Good agreement with tail fits

Consequences for ILC

α_{s} determination: adding ILC data

For increasing Q

- Peak moves toward smaller
- Events tend to accumulate at very small region
- The tail regions becomes longer but less populated
α_{s} determination: adding ILC data

For increasing Q

- Size of nonperturbative effects decreases with Q
- They scale as I/Q.
- At very high Q , nonperturbative effects become smaller than expt. errors may be neglected

α_{s} determination: adding ILC data

Simple exercise: make up ILC data at 500 GeV Assume 1% statistical and 1% systematic errors Add this "ILC" data to LEP and other colliders data

Repeal fils

Unfortunately there is not much gain...

C-parameter

Theoretical knowledge

$H(Q, \mu)$ Hard function: same as thrust
$J_{n}(s, \mu)$ Jet function: same as thrust

Soft function known analytically at one
$S_{C}(\ell, \mu)$ Loop, numerically at two loops
Running known at three loops

Fixed-order predictions known at three loops
Mass corrections known at N2LL and two loops

α_{s} determination: C-parameter tail fits

Analytic computation of soft function at 1-Loop

Numerical determination at 2-Loops
α_{s} determination: C-parameter tail fits

Complicaked-looking renormalization scales Estimate of theory uncertainties

Very good description of experimental data

α_{s} determination: C-parameter tail fits

Heavy Jet Mass

Theoretical knowledge

$H(Q, \mu)$ Hard function: same as thrust
$J_{n}(s, \mu)$ Jet function: same as thrust

Soft function known analytically at two $S\left(\ell_{1}, \ell_{2}, \mu\right)$ Loops. Complicated non-global structure Running known at three loops

Fixed-order predictions known at three loops
Mass corrections known at N2LL and two loops

Factorization Theorem

$\frac{1}{\sigma_{0}} \frac{\mathrm{~d}^{2} \sigma}{\mathrm{~d} s_{1} \mathrm{~d} s_{2}}=H\left(Q^{2}, \mu\right) \int \mathrm{d} k_{1} \mathrm{~d} k_{2} J\left(s_{1}-Q k_{1}, \mu\right) J\left(s_{2}-Q k_{2}, \mu\right) S\left(k_{1}, k_{2}, \mu\right)$

Factorization Theorem

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d}^{2} \sigma}{\mathrm{~d} s_{1} \mathrm{~d} s_{2}}=H\left(Q^{2}, \mu\right) \int \mathrm{d} k_{1} \mathrm{~d} k_{2} J\left(s_{1}-Q k_{1}, \mu\right) J\left(s_{2}-Q k_{2}, \mu\right) S\left(k_{1}, k_{2}, \mu\right)
$$

double convolution

Factorization Theorem

$\frac{1}{\sigma_{0}} \frac{\mathrm{~d}^{2} \sigma}{\mathrm{~d} s_{1} \mathrm{~d} s_{2}}=H\left(Q^{2}, \mu\right) \int \mathrm{d} k_{1} \mathrm{~d} k_{2} J\left(s_{1}-Q k_{1}, \mu\right) J\left(s_{2}-Q k_{2}, \mu\right) S\left(k_{1}, k_{2}, \mu\right)$

Ewo-dimensional soft function

$$
S\left(\ell_{1}, \ell_{2}, \mu\right)=\int \mathrm{d} k_{1} \mathrm{~d} k_{2} S^{\text {part }}\left(\ell_{1}-k_{1}, \ell_{2}-k_{2}, \mu\right) F\left(k_{1}, k_{2}\right)
$$

Factorization Theorem

$\frac{1}{\sigma_{0}} \frac{\mathrm{~d}^{2} \sigma}{\mathrm{~d} s_{1} \mathrm{~d} s_{2}}=H\left(Q^{2}, \mu\right) \int \mathrm{d} k_{1} \mathrm{~d} k_{2} J\left(s_{1}-Q k_{1}, \mu\right) J\left(s_{2}-Q k_{2}, \mu\right) S\left(k_{1}, k_{2}, \mu\right)$

Ewo-dimensional soft function

$$
S\left(\ell_{1}, \ell_{2}, \mu\right)=\int \mathrm{d} k_{1} \mathrm{~d} k_{2} S^{\mathrm{part}}\left(\ell_{1}-k_{1}, \ell_{2}-k_{2}, \mu\right) F\left(k_{1}, k_{2}\right)
$$

Ewo dimensional perturbative soft function

Ewo dimensional non-perturbakive shape function

Factorization Theorem

$\frac{1}{\sigma_{0}} \frac{\mathrm{~d}^{2} \sigma}{\mathrm{~d} s_{1} \mathrm{~d} s_{2}}=H\left(Q^{2}, \mu\right) \int \mathrm{d} k_{1} \mathrm{~d} k_{2} J\left(s_{1}-Q k_{1}, \mu\right) J\left(s_{2}-Q k_{2}, \mu\right) S\left(k_{1}, k_{2}, \mu\right)$

Ewo-dimensional sofe function

$$
\begin{aligned}
S\left(\ell_{1}, \ell_{2}, \mu\right)=\int \mathrm{d} k_{1} \mathrm{~d} k_{2} S^{\mathrm{part}}\left(\ell_{1}-k_{1}, \ell_{2}-k_{2}, \mu\right) F\left(k_{1}, k_{2}\right) \\
\frac{\mathrm{d} \sigma}{\mathrm{~d} \rho}=2 Q^{2} \int_{0}^{Q^{2} \rho} \mathrm{~d} s_{1}\left(\frac{\mathrm{~d} \sigma}{\mathrm{~d} s_{1} \mathrm{~d} s_{2}}\right)_{s_{2}=Q^{2} \rho}
\end{aligned}
$$

Heavy Jet Mass projection

Factorization Theorem

$\frac{1}{\sigma_{0}} \frac{\mathrm{~d}^{2} \sigma}{\mathrm{~d} s_{1} \mathrm{~d} s_{2}}=H\left(Q^{2}, \mu\right) \int \mathrm{d} k_{1} \mathrm{~d} k_{2} J\left(s_{1}-Q k_{1}, \mu\right) J\left(s_{2}-Q k_{2}, \mu\right) S\left(k_{1}, k_{2}, \mu\right)$

Ewo-dimensional soft function

$$
\begin{array}{r}
S\left(\ell_{1}, \ell_{2}, \mu\right)=\int \mathrm{d} k_{1} \mathrm{~d} k_{2} S^{\mathrm{part}}\left(\ell_{1}-k_{1}, \ell_{2}-k_{2}, \mu\right) F\left(k_{1}, k_{2}\right) \\
\frac{\mathrm{d} \sigma}{\mathrm{~d} \rho}=2 Q^{2} \int_{0}^{Q^{2} \rho} \mathrm{~d} s_{1}\left(\frac{\mathrm{~d} \sigma}{\mathrm{~d} s_{1} \mathrm{~d} s_{2}}\right)_{s_{2}=Q^{2} \rho}=\int_{0}^{Q \rho} \mathrm{~d} k \frac{\mathrm{~d} \hat{\sigma}}{\mathrm{~d} \rho}\left(\rho-\frac{k}{Q}\right) F_{\rho}(k)
\end{array}
$$

Heavy Jel Mass projection

Factorization Theorem

$\frac{1}{\sigma_{0}} \frac{\mathrm{~d}^{2} \sigma}{\mathrm{~d} s_{1} \mathrm{~d} s_{2}}=H\left(Q^{2}, \mu\right) \int \mathrm{d} k_{1} \mathrm{~d} k_{2} J\left(s_{1}-Q k_{1}, \mu\right) J\left(s_{2}-Q k_{2}, \mu\right) S\left(k_{1}, k_{2}, \mu\right)$

Ewo-dimensional sofe function

$$
\begin{gathered}
S\left(\ell_{1}, \ell_{2}, \mu\right)=\int \mathrm{d} k_{1} \mathrm{~d} k_{2} S^{\mathrm{part}}\left(\ell_{1}-k_{1}, \ell_{2}-k_{2}, \mu\right) F\left(k_{1}, k_{2}\right) \\
\frac{\mathrm{d} \sigma}{\mathrm{~d} \rho}=2 Q^{2} \int_{0}^{Q^{2} \rho} \mathrm{~d} s_{1}\left(\frac{\mathrm{~d} \sigma}{\mathrm{~d} s_{1} \mathrm{~d} s_{2}}\right)_{s_{2}=Q^{2} \rho}=\int_{0}^{Q \rho} \mathrm{~d} k \frac{\mathrm{~d} \hat{\sigma}}{\mathrm{~d} \rho}\left(\Omega-\frac{k}{Q}\right) F_{\rho}(k)
\end{gathered}
$$

Heavy Jet Mass projection

Operator Product Expansion

$$
\Omega_{i}=\int \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}\right)^{i} F\left(k_{1}, k_{2}\right)
$$

Thrust power corrections

Operator Product Expansion

$\Omega_{i}=\int \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}\right)^{i} F\left(k_{1}, k_{2}\right)=2^{i} \Omega_{0, i}$ Thruse power corrections $\Omega_{i, j}=\Omega_{j, i}=\int \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}\right)^{i}\left(k_{2}\right)^{j} F\left(k_{1}, k_{2}\right)$

HJM power corrections

Operator Product Expansion

$$
\begin{aligned}
& \Omega_{i}=\int \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}\right)^{i} F\left(k_{1}, k_{2}\right)=2^{i} \Omega_{0, i} \quad \text { Thruse power corrections } \\
& \Omega_{i, j}=\Omega_{j, i}=\int \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}\right)^{i}\left(k_{2}\right)^{j} F\left(k_{1}, k_{2}\right) \quad \text { HJM power corrections } \\
& \Upsilon_{i, j}=\int_{0}^{\infty} \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}-k_{2}\right) \theta\left(k_{1}-k_{2}\right)\left(k_{1}\right)^{i}\left(k_{2}\right)^{j} F\left(k_{1}, k_{2}\right) \\
& \text { HJM moment } \\
& \text { power corrections }
\end{aligned}
$$

Operator Product Expansion

$\Omega_{i}=\int \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}\right)^{i} F\left(k_{1}, k_{2}\right)=2^{i} \Omega_{0, i}$ Thrust power corrections $\Omega_{i, j}=\Omega_{j, i}=\int \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}\right)^{i}\left(k_{2}\right)^{j} F\left(k_{1}, k_{2}\right) \quad$ HIM
$\Upsilon_{i, j}=\int_{0}^{\infty} \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}-k_{2}\right) \theta\left(k_{1}-k_{2}\right)\left(k_{1}\right)^{i}\left(k_{2}\right)^{j} F\left(k_{1}, k_{2}\right)$ power corrections HJM moment power corrections
Operator product expansion in the kail

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \rho}=\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \rho}-\frac{\Omega_{1,0}}{Q} \frac{\mathrm{~d}^{2} \hat{\sigma}}{\mathrm{~d} \rho^{2}}+\frac{1}{2} \frac{\Omega_{2,0}}{Q^{2}} \frac{\mathrm{~d}^{3} \hat{\sigma}}{\mathrm{~d} \rho^{3}}+2 \frac{\Omega_{1,1}-\Omega_{2,0}}{Q^{2}}\left(Q^{6} \frac{\mathrm{~d}^{2} \hat{\sigma}}{\mathrm{~d} s_{1} \mathrm{~d} s_{2}}\right)_{s_{1}=s_{2}=Q^{2} \rho}
$$

Operator product expansion for thrust

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \tau}=\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \rho}+\sum_{n}^{\infty}(-2)^{n} \frac{\Omega_{n, 0}}{Q^{n}} \frac{\mathrm{~d}^{n} \hat{\sigma}}{\mathrm{~d} \tau^{n}}
$$

Operator Product Expansion

$\Omega_{i}=\int \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}\right)^{i} F\left(k_{1}, k_{2}\right)=2^{i} \Omega_{0, i}$ Thrust power corrections
$\Omega_{i, j}=\Omega_{j, i}=\int \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}\right)^{i}\left(k_{2}\right)^{j} F\left(k_{1}, k_{2}\right) \quad$ HIM
$\Upsilon_{i, j}=\int_{0}^{\infty} \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}-k_{2}\right) \theta\left(k_{1}-k_{2}\right)\left(k_{1}\right)^{i}\left(k_{2}\right)^{j} F\left(k_{1}, k_{2}\right)$

power corrections

HJM moment power corrections
Operator product expansion in the kail

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \rho}=\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \rho}-\frac{\Omega_{1,0}}{Q} \frac{\mathrm{~d}^{2} \hat{\sigma}}{\mathrm{~d} \rho^{2}}+\frac{1}{2} \frac{\Omega_{2,0}}{Q^{2}} \frac{\mathrm{~d}^{3} \hat{\sigma}}{\mathrm{~d} \rho^{3}}+2 \frac{\Omega_{1,1}-\Omega_{2,0}}{Q^{2}}\left(Q^{6} \frac{\mathrm{~d}^{2} \hat{\sigma}}{\mathrm{~d} s_{1} \mathrm{~d} s_{2}}\right)_{s_{1}=s_{2}=Q^{2} \rho}
$$

Operator product expansion for thrust

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \tau}=\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \rho}+\sum_{n}^{\infty}(-2)^{n} \frac{\Omega_{n, 0}}{Q^{n}} \frac{\mathrm{~d}^{n} \hat{\sigma}}{\mathrm{~d} \tau^{n}}
$$

Operator Product Expansion

$\Omega_{i}=\int \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}\right)^{i} F\left(k_{1}, k_{2}\right)=2^{i} \Omega_{0, i}$ Thrust power corrections
$\Omega_{i, j}=\Omega_{j, i}=\int \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}\right)^{i}\left(k_{2}\right)^{j} F\left(k_{1}, k_{2}\right)$ HJM power corrections
$\Upsilon_{i, j}=\int_{0}^{\infty} \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}-k_{2}\right) \theta\left(k_{1}-k_{2}\right)\left(k_{1}\right)^{i}\left(k_{2}\right)^{j} F\left(k_{1}, k_{2}\right)$
HJM moment power corrections
Operator product expansion in the kail

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \rho}=\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \rho}-\frac{\Omega_{1,0}}{Q} \frac{\mathrm{~d}^{2} \hat{\sigma}}{\mathrm{~d} \rho^{2}}+\frac{1}{2} \frac{\Omega_{2,0}}{Q^{2}} \frac{\mathrm{~d}^{3} \hat{\sigma}}{\mathrm{~d} \rho^{3}}+2 \frac{\Omega_{1,1}-\Omega_{2,0}}{Q^{2}}\left(Q^{6} \frac{\mathrm{~d}^{2} \hat{\sigma}}{\mathrm{~d} s_{1} \mathrm{~d} s_{2}}\right)_{s_{1}=s_{2}=Q^{2} \rho}
$$

universal*
leading power
correction
non-universal subleading
power correction

* modulo hadron mass effects

Operator Product Expansion

$\Omega_{i}=\int \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}\right)^{i} F\left(k_{1}, k_{2}\right)=2^{i} \Omega_{0, i}$ Thrust power corrections $\Omega_{i, j}=\Omega_{j, i}=\int \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}\right)^{i}\left(k_{2}\right)^{j} F\left(k_{1}, k_{2}\right) \quad$ HIM
$\Upsilon_{i, j}=\int_{0}^{\infty} \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}-k_{2}\right) \theta\left(k_{1}-k_{2}\right)\left(k_{1}\right)^{i}\left(k_{2}\right)^{j} F\left(k_{1}, k_{2}\right)$ power corrections HJM moment power corrections
Operator product expansion in the bail

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \rho}=\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \rho}-\frac{\Omega_{1,0}}{Q} \frac{\mathrm{~d}^{2} \hat{\sigma}}{\mathrm{~d} \rho^{2}}+\frac{1}{2} \frac{\Omega_{2,0}}{Q^{2}} \frac{\mathrm{~d}^{3} \hat{\sigma}}{\mathrm{~d} \rho^{3}}+2 \frac{\Omega_{1,1}-\Omega_{2,0}}{Q^{2}}\left(Q^{6} \frac{\mathrm{~d}^{2} \hat{\sigma}}{\mathrm{~d} s_{1} \mathrm{~d} s_{2}}\right)_{s_{1}=s_{2}=Q^{2} \rho}
$$

Operator product expansion for Eree-level moments

$$
M_{n, \text { tree }}^{\rho}=\frac{1}{Q^{n}}\left(\Omega_{n, 0}+\sum_{k=0}^{n-1} \Upsilon_{n-1-k, k}\right)
$$

Operator Product Expansion

$\Omega_{i}=\int \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}\right)^{i} F\left(k_{1}, k_{2}\right)=2^{i} \Omega_{0, i}$ Thrust power corrections
$\Omega_{i, j}=\Omega_{j, i}=\int \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}\right)^{i}\left(k_{2}\right)^{j} F\left(k_{1}, k_{2}\right)$ HJM power corrections
$\Upsilon_{i, j}=\int_{0}^{\infty} \mathrm{d} k_{1} \mathrm{~d} k_{2}\left(k_{1}-k_{2}\right) \theta\left(k_{1}-k_{2}\right)\left(k_{1}\right)^{i}\left(k_{2}\right)^{j} F\left(k_{1}, k_{2}\right) \quad$ HJM moment power corrections
Operator produce expansion in the bail

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \rho}=\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \rho}-\frac{\Omega_{1,0}}{Q} \frac{\mathrm{~d}^{2} \hat{\sigma}}{\mathrm{~d} \rho^{2}}+\frac{1}{2} \frac{\Omega_{2,0}}{Q^{2}} \frac{\mathrm{~d}^{3} \hat{\sigma}}{\mathrm{~d} \rho^{3}}+2 \frac{\Omega_{1,1}-\Omega_{2,0}}{Q^{2}}\left(Q^{6} \frac{\mathrm{~d}^{2} \hat{\sigma}}{\mathrm{~d} s_{1} \mathrm{~d} s_{2}}\right)_{s_{1}=s_{2}=Q^{2} \rho}
$$

Operator product expansion for bree-level moments OPE parameters

$$
M_{n, \text { tree }}^{\rho}=\frac{1}{Q^{n}}\left(\Omega_{n, 0}+\sum_{k=0}^{n-1} \Upsilon_{n-1-k, k}\right)
$$

these moments do not show up in tail OPE !!!

Oriented Event Shapes

Oriented event shapes

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{ded} \cos \theta_{T}}=f\left(e, \cos \theta_{T}\right)
$$

a priory one expects a general function of e and cos

Oriented event shapes

General proof: [VM and G. Rodrigo JHEP11 (2013) 030]

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} e \mathrm{~d} \cos \theta_{T}}=\frac{3}{8}\left(1+\cos ^{2} \theta_{T}\right) \frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} e}+\left(1-3 \cos ^{2} \theta_{T}\right) \frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma_{\mathrm{ang}}}{\mathrm{~d} e}
$$

Oriented event shapes

General proof: [VM and G. Rodrigo JHEP11 (2013) 030]
$\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{ded} \cos \theta_{T}}=\frac{3}{8}\left(1+\cos ^{2} \theta_{T}\right) \frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} e}+\left(1-3 \cos ^{2} \theta_{T}\right) \frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma_{\text {ang }}}{\mathrm{d} e}$
singular terms here

Oriented event shapes

Analytic computation at LO
Agreement with EVENT2

[VM and G. Rodrigo 1307.3513]

[VM and G. Rodrigo 1307.3513]

Numerical determination at NLO Using EVENT2

(a)

(b)

Massive Evenl Shapes

Primary mass effects

[S. Fleming, S. Mantry, A.H. Hoang, I.W. Stewart]

In the tail of the distribution only jet function is modified at $\mathrm{N}^{2} \mathrm{LL}$
When mass of jet very similar to mass of quark there appears a new hierarchy along with new large logs

$$
\log ^{n}\left(\frac{s-m^{2}}{m^{2}}\right)
$$

One has to match SCET to boosted HQET to sum them up

In this way one can also treat finite width effects

Secondary mass effects

[S. Gritschacher, A. H. Hoang, I. Jemos, P. Pietrulewicz]

Different scenarios

Appear at NNLO

Mass modes generate rapidity logs which enter at $\mathrm{N}^{2} \mathrm{LL}$

Depending on where the mass scale is sitting one has different theoretical set-ups

Conclusions $\$$
 Oullook

Conclusions

- Precision measurements with jets are essential.
- Event Shapes are an ideal tool, great theoretical properties.
- Understanding power corrections mandatory for accurate theoretical predictions. Hadron mass effects cannot be neglected.
- C-parameter and HJM results on the way
- Oriented event shapes give extra handle on jets.
- Paving the way for precision kop mass determination!

