LHC results and prospects Higgs and other SM studies

On behalf of ATLAS and CMS collaborations Yuji Enari ICEPP, the Tokyo University

ATLAS & CMS Studies on Higgs

2000 LEP terminated, LHC construction started 2009 First collision 2010 $\sqrt{s} = 7$ TeV, $\int L dt = 40$ pb⁻¹ 2011 $\sqrt{s} = 7$ TeV, $\int L dt = 5$ fb⁻¹ 2012 $\sqrt{s} = 8$ TeV, $\int L dt = 20$ fb⁻¹

Designed for Higgs discovery and New Physics search

- Excellent vertex and tracking system
- Excellent calorimetry
- Large coverage for muon detection
- Good hermetisity for Missing Et

CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP

- Observation of Higgs-like resonance at 125.5 GeV
- The rate is compatible with SM.

Many congratulations !

- The discovery : fill last missing piece of SM
- We can describe how particles have mass.
- Next is to proceed precise measurement on
 - Rates and couplings
 - Spin and Parity
 - \rightarrow Reveal the physics behind or beyond the Standard Model.

Processes (production and decay)

ATLAS & CMS Studies on Higgs

ttH: σ = 0.13 pb

 $M_{\rm H} \sim 125$ GeV is perfect point for this measurement.

ATLAS & CMS Studies on Higgs

- Split data sample to enhance S/B
 - Detector response, Physics backgrounds
 - <u>Signal prod. process</u>
- MVA analysis
 - Both in Object IDs and final analysis.
 - More often used in CMS.

signal composition (%)

Igniticanco					5 1	
$\sqrt{S} = 7$ TeV. 8 TeV		ATLAS		CMS		
	5 fb ⁻¹ + 20 fb ⁻¹	Obs	Ехр	Obs	Exp	
	$H \rightarrow \gamma \gamma$	7.4	4.3	3.2	4.2	
	H→ZZ	6.6	4.4	6.7	7.1	
	н→ww	3.8	3.8	4.0	5.1	
μ	$= \frac{\sigma \times Br}{(\sigma \times Br)_{SN}}$	$\mu = 1.30$	±0.20	$\mu=\textbf{0.80{\pm}0.14}$		
	N N	$J_{H} = 125.5 \pm 0.2_{s}$	$M_{H} = 125.7 \pm$	$0.3_{stat} \pm 0.3_{syst}$		

Each observed significance is > 3 σ . Rates are consistent with SM.

Signal strength: probe production rate

Y. Enari 12

ATLAS & CMS Studies on Higgs

Signal strength: probe production rate

ATLAS & CMS Studies on Higgs

Evidence of VBF Higgs production.

- ggF well established, evidence for VBF
- Indication of VH, what about is ttH?

ATLAS: full analysis is under way.

Need to wait new data to establish measurement on ttH production.

• Extracting Higgs coupling from σxBr requires assumptions at LHC $\sigma \cdot B (i \rightarrow H \rightarrow f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$

- Total width controlled by $H \rightarrow bb$
- H \rightarrow cc is 5% unmeasured contribution
 - Scale with bb
 - bb/cc scale with ττ
- No new invisible modes
- In measurement, introduce scaling parameter, κ², which scales cross section and decay width to probe them.

• $ggH: \kappa_g, H\gamma\gamma: \kappa_{\gamma}/\kappa_H$ $(\sigma \cdot BR)(gg \rightarrow H \rightarrow \gamma\gamma) = \left[\sigma(gg \rightarrow H) \cdot BR(H \rightarrow \gamma\gamma)\right]_{SM} \times \left[\frac{\kappa_g^2 \cdot \kappa_{\gamma}^2}{\kappa_H^2}\right]_{SM}$

 κ_{H}^{2} : the scale factor to the total Higgs decay width

 \rightarrow This allows to probe BSM in the loop

• Decompose Loops (if necessary) ggH: $K_{H}^{2} = \sum \kappa_{x}^{2} \cdot \frac{BR_{SM}(H \to xx)}{1 - BR_{BSM}}$

 $\sigma_{SM} = \sigma_{tt} + \sigma_{bb} + \sigma_{tb}$ $= \kappa_t^2 \sigma_{tt} + \kappa_b^2 \sigma_{bb} + \kappa_t \kappa_b \sigma_{tb}$ $\kappa_g^2 = \frac{\sigma}{\sigma_{SM}} = \frac{\kappa_t^2 \sigma_{tt} + \kappa_b^2 \sigma_{bb} + \kappa_t \kappa_b \sigma_{tb}}{\sigma_{tt} + \sigma_{bb} + \sigma_{tb}}$ $\approx 1.058 \kappa_t^2 + 0.007 \kappa_b^2 - 0.065 \kappa_t \kappa_b^* \qquad (M_{H}=125.5 \text{ GeV}) \qquad \approx 0.07 \kappa_t^2 + 1.59 \kappa_W^2 - 0.66 \kappa_t \kappa_W^*$

Fermion and Boson Coupling

Y. Enari 17

ATLAS & CMS Studies on Higgs

Assume

-
$$\kappa_{\rm F}$$
 : $\kappa_{\rm t}$ = $\kappa_{\rm b}$ = $\kappa_{\rm \tau}$ = ..., $\kappa_{\rm V}$: $\kappa_{\rm W}$ = $\kappa_{\rm Z}$
- No BSM contribution to Γ

– No BSM contribution to $\Gamma_{\rm H}$

Prove $\kappa_{\text{F}} \text{ and } \kappa_{\text{V}}$

[0.63, 1.05]

[0.59, 1.30]

 1.04 ± 0.14

 1.20 ± 0.15

Кg

Κγ

Consistent with 1. No indication of BSM.

 $\lambda_{ij} = \frac{\kappa_i}{\kappa_i}$

<u>CMS-PAS-HIG-13-005</u>

ATLAS & CMS Studies on Higgs

Higgs coupling strength nicely scales with Mass!

ATLAS & CMS Studies on Higgs

Probe Spin and Parity by event kinematics

10

5

-1

	Н→үү	H→ww	H→ZZ
J ^p = 0+ vs 0-			~
J ^P = 0+ vs 1-	*	~	~
J ^p = 0+ vs 1+	*	~	~
J ^P = 0+ vs 2+	~	✓	~

* Excluded by Landau-Yang theorem

<u>CL on Exclusion</u>					
	ATLAS	CMS			
J ^P = 0-	97.8%	99.8%			
$J^{P} = 1$	99.7	>99.9%			
J ^P = 2+	99.9%	99.4%			

Data favor $J^P = 0+$ \rightarrow SM Higgs.

Summary on property measurements

ATLAS & CMS Studies on Higgs

22

Y. Enari

After discovery of Higgs-like boson

- Rate
 - ggH well established
 - Evidence for VBF
 - Indication of VH
 - Well progress on ttH and H \rightarrow ff
- Coupling analysis
 - All consistent with SM
 - No indication of BSM in loop
- Spin and Parity
 - Based on angular analyses, J^P = 0-, 1+, 1-, 2+ are excluded more than 99% CL. Data favor J^P=0+ as Standard Model expectation.

Observed Higgs-like boson is now a Higgs boson.

• LHC upgrade project

Accelerator, Detector upgrades.

- LHC is Higgs factory With 3000 fb⁻¹,
 - Over 100 M Higgs boson
 - − 20k H \rightarrow ZZ \rightarrow 4 leptons
 - 400k H→γγ
 - 50 H→J/psi γ
- Today's result
 - For "European Strategy / ECFA workshop
 - Consider only hadron colliers scenarios.

ATLAS & CMS Studies on Higgs

• For Physics analysis:

Need huge statistics \rightarrow high luminosity is welcome!

- Challenge: Trigger and reconstruction under huge pileups.
 - Now: designed upto 23, can handle 80.
 - But not under 140.

- Enforce trigger performance
 - Ex. CMS Muon trigger coverage ($|\eta| < 2.5 \rightarrow |\eta| < 4.0$)

- For pileups
 - Upgrade inner tracker(pixel)
 - Readout electronics
 - Forward detector replacements.
- Effects are studied by Simulation
- Recover degradation due to pileups
- Projections assume based on current ID performance.

CMS PAS FTR-13-003, ATL-PHYS-PUB-2013-009

Expected sensitivity on the couplings

Y. Enari 27

ATLAS & CMS Studies on Higgs

ATLAS Internal

 With 3000 fb⁻¹, systematics need to improve including theoretical uncertainties.

Higgs couplings can be measured at ~ 5% level with 3000 fb⁻¹.

- Higgs self-coupling is an intrinsic property of Higgs model. This is crucial test of the electro weak symmetry breaking mechanism.
- Higgs self coupling ($\lambda_{\rm HHH}$) gives negative interference in Higgs pair production.

-
$$\lambda_{\text{HHH}}$$
 = 1: σ (NLO) = 34 fb

→ $\lambda_{\text{HHH}} = 0(2)$: σ (NLO) = 71 (16) fb

- Measurement of the pair production is very challenging. Need further studies.
 - Large irreducible background from "single" Higgs+X processes
 - High pileups conditions at High Lumi Runs.

Mode	bbWW	bbττ	wwww	γγ <mark>bb</mark>	γγγγ	
Expected events	30000	9000	6000	320	1	@ 3000 fb ⁻¹

- 3000 fb⁻¹ of data provides rich program on Higgs sector
 - Rare processes
 - H→μμ, Ζγ, J/psi γ
 - Precise measurement
 On ttH: including H→γγ, ZZ→4leptons
 Couplings : could reach ~ 5% level
 Progress on Theory side is necessary!
 - Probe self-coupling
 - Pair production can access
 - Need more studies
 - New states
 - A lot of potential to search new bosons!
- Difficult area for LHC
 - Н→сс
 - Total width
 - With $H \rightarrow \gamma \gamma$, ZZ, could reach
 - < 920 MeV (@ 300 fb⁻¹)
 - < 200 MeV (@3000 fb⁻¹) but hard to reach SM level (4.2 MeV).

ATLAS & CMS Studies on Higgs

• ATLAS and CMS discover a Higgs boson

– J^P = 0-, 1+, 1-, 2+ are excluded more than 99% CL.

Rates and couplings consistent with Standard Model

Mass $m = 125.9 \pm 0.4$ GeV (from PDG)

- \rightarrow This is great success of nice collaboration of
 - Accelerator, Theory and Experiments
- LHC will run for revealing physics behind Standard Model for next decades.
- Look forward to nice collaboration with Linear collider!

Backup

ATLAS

ATLAS-CONF-2013-014

 $ATLAS: M_{H} = 125.5 \pm 0.2_{stat} \pm 0.6_{syst} GeV$

CMS

CMS : $M_{H} = 125.7 \pm 0.3_{stat} \pm 0.3_{syst} GeV$ From- $\gamma\gamma$: $\Gamma_{H} < 6.9 GeV @ 95\% CL$ (direct)

ATLAS & CMS **Studies on Higgs**

 $H \rightarrow Z \gamma$

CMS

140

150

 $H \rightarrow Z \gamma$

140

145

160

Observed

Expected $\pm 1\sigma$

Expected $\pm 2 \sigma$

w/o syst. uncertainty

150

155

m_H (GeV)

160

170

√s = 8 TeV, L = 19.6 fb⁻¹

180

m_{II/} (GeV)

190

Background Model

Signal $m_{\mu} = 125 \text{ GeV x } 75$

±1σ

±2σ

ATLAS

🙀 🕎 Direct Higgs width measurement

ATLAS & CMS Studies on Higgs

- CMS extracted $\Gamma_{\rm H}$ < 6.9 GeV from with of H $\rightarrow \gamma\gamma$ - SM: $\Gamma_{\rm H}$ = 4.2 MeV
- Use interference between signal and background
 - Makes shifts on the mass peak

Dixon and Li arXiv:1305.3854

- Measure $pT_{\gamma\gamma}$ <30 GeV and >30 GeV

Data

Top ZZ

 $L = 13.0 \, \text{fb}^{-1}$

Other BG

350

400 450 E^{miss} [GeV]

CMS Preliminary

 $\mathcal{H}_{\mathcal{H}} \sigma_{\mathsf{7H SM}} \times \mathsf{BR}_{\mathsf{7H \to II+iI}}$

Expected $\pm 1\sigma$ Expected $\pm 2\sigma$

Observed

-- Expected

CMS-HIG-12-034

135

130

140

145

M_µ [GeV]

Signal (SM ZH, m,=125 GeV)

300

95% CL limit: σ_{ZH}×BR(ZH→ll inv) [fb]

Npv