

Beam Test Performance of the SiECAL Technological Prototype

LCWS13 Tokyo

Yuji Sudo (Kyushu University) on behalf of the CALICE collaboration

SiW ECAL R&D

Physics Prototype

Proof of principle

2003 - 2011

Technological Prototype

Engineering challenges

LC detector

Number of channels : 9720 Weight : ~ 200 Kg

Number of channels : 45360 Weight : ~ 700 Kg ECAL : Channels : ~100 10⁶ Total Weight : ~130 t

Technological Prototype

Technological solutions for the final detector

Construction start: 2010

Test beam: 2012

- Realistic dimensions
- Integrated front end electronic
- Small power consumption (Power pulsed electronics)

Front end electronics: SKIROC

SKIROC (Silicon Kalorimeter Integrated Read Out Chip)

- Size 7.5 mm x 8.7 mm, 64 channels
- Variable gain charge amp, 12-bit Wilkinson ADC, digigal logic
- Large dynamic range (~2500 MIPs), low noise (~1/10 of a MIP)
- Auto-trigger
- Low Power: (25 μ W/ch) power pulsing

Test beams with fabricated layers

Layer design for beam tests Integrated FE electronics Conservative ASU design for beam test - 1 Si Wafer with 256 pixels of 5x5 mm2 and thickness of 325 μm - Wafer glued onto PCB

- 4 ASICs in PQFP package
- Up to 10 layers

Test program

- 2012: Commissioning
 - Test of highly integrated electronics in continuous power mode
- 2013: Test of power pulsing Test in magnetic field

Data Analysis 2012 – Signal over Noise ratio

4 ASICs are mounted on a layer

Results after setting of trigger thresholds and event filtering White cells (noisy channel) : high threshold Correlation between noise and PCB routing

S/N > 10 (for all gains available with SKIROC2)

LCWS Tokyo 2013 Line length of a channel to a leg of ASIC6

Event displays

2 e- (3 GeV, no tungsten)

1 cosmic + 1 e-(3 GeV, no tungsten)

1 e- (5 GeV) 5 W plates between layers

'Plane events???'

Plane events observed in 2012 with significant frequency It can be remedied by correct PreAmplifier reference

178(p1891 n149m11624r) 10

8

6

4

2

Power pulsing

- Electronics switched on during a few ms: ~1 ms of ILC bunch train and data acquisition
- Low voltage of electronics are shut down between bunch trains

Mastering of technology is essential for operation of ILC detectors

Power pulsing – "ramp up" time

Power pulsing – Pedestal analysis

Noise for all the Pad of the detector

 $\begin{array}{c} \left(\begin{array}{c} \textbf{W} \\ \textbf{W} \\$

Clear pattern for ASICs M1, M3 Pedestal shift of ~1% in PP mode Pedestal width constant Less clear situation for M2, M4 PCB routing seems to distort pedestal spectra

Power pulsing – MIP analysis

- Fit energy distribution: Landau convoluted with a Gaussian
- Sigma of the Gaussian is fixed to the noise

ASIC M2 and M4

- ASIC M1 and M3 are ok under power pulsing operation.
- The activity of digital lines disrupts ASICs M2 and M4.

LCWS Tokyo 2013

Power pulsing tests in magnetic field I

Active channels are stable up to 2T B field

Test in magnetic field II

Measurement of the ohmic resistance across the interconnection between two ASUs With and w/o B-Field, various duty cycles and frequencies

 The ohmic resistance varies by about 20 mΩ (thermal effect)

Conclusion and outlook

- Since beginning of 2012 SiEcal R&D is running at full speed
- Four beam tests with conservative but yet progressively complicated setup Detailed evaluation of performance of system
 A number of observed odd behaviors were actually related to peripheral devices or non optimal power supply
 Self-triggering ASICs require very careful power management

Power pulsing is full system issue

Satisfactory when ASICs properly connected Less satisfactory in other case Active channels are stable up to 2T B field

Addressing now issues of a real calorimeter system

16 ASICs per ASU, up to 160 ASICs per layer Next ASIC version Long layer Cooling First ideas on industrialisation Test in strong B field

Backup

Si-W ECAL DAQ system

Standard: Giga-ethernet, 8b10b encoded local link, diff. pairs lvds signals over HDMI

Scalable: architecture of a computing network w/o routing, modular software configured using XML, scripted using python.

Compact: one cable for slow control, data acquisition, fast signals and possibly power

Scaled for low occupancy, low noise detectors featuring **auto-trigger & zero suppression at read-out chip level**. 40 Mbit/s link at detector interface allow to control & read 10k channels.

Central clock and control board (CCC) for overall synchronisation

Modular integration of components into 6U modules for use in test beams.

2013 beam tests

Battery charger application AVX BestCap BZ01 After regulator

SKIROC integration defaults

Pre Amplifier is referenced to the analog power supply level Instabilities of power supply level \rightarrow fake events

- Some analogue signals plugged on digital power supply \rightarrow Noise at ASIC inputs
- Analog power supply common to the 4 ASIC
- Self-sustained \rightarrow sometimes filled all the 15 ASIC memories
- Highly dependant of the number of ASIC with hits, dependant of the number of triggered channels

Patches

Big capacitance to stabilise power supply

Re-routing of analog and digital power supply

2013 beam tests first results

Frequency of plane events

- Slab 2 and 8 were subject to patches
 Smaller frequency of plane events observed
- However effects of retriggering are still under investigation

Calibration of ASICs

Establishment of calibration procedure for a larger number of cells

S-Curves for all the channels

Beam spot

Detection efficiency

Data: 3GeV – No W – XY scan Total number of events: 2,3.10⁶ Track selection:

At least 3 layers with hits Linear fit of the e- track Nhits<10

Inefficiencies due to: Switched off channels Too high trigger thresholds (80%-95% of the MIP)

Should be improved with the next test beam (December)

Energy measurement

Energy calibration

Establishment of calibration procedure for a larger number of cells Homogeneity of response (x,y scan of detector)

Thanks

Special thanks to our experts: Frédéric, Mickael, Patrick, Rémi and Stéphane

And to everyone who took part in the preparation of the test beam:

- LLR, LAL+OMEGA, LPNHE
- Kyushu University, Tokyo University, Nippon Dental University
 SKKU

SiW ECAL for a future LC

SiW ECAL is one of the prototypes for future LC detectors

→ Optimized for Particle Flow Algorithm:

The SiW ECAL in the ILD Detector

Basic Requirements:

- Extreme high granularity
- Compact and hermetic

Basic Choices:

- Tungsten as absorber material
 - $X_0=3.5$ mm, $R_M=9$ mm, $\lambda_1=96$ mm
 - Narrow showers
 - Assures compact design
- Silicon as active material
 - Support compact design
 - Allows for pixelisation
 - Large signal/noise ratio