CMOS Pixel Sensors for High Precision Vertexing : Recent Progress and Emerging Perspectives

M. Winter (PICSEL & ALICE teams of IPHC-Strasbourg)

- Sensor design : contrib. from Y.Degerli (AIDA/Saclay) -

LCWS-13, Tokyo Univ., 12th Nov. 2013

Outline

- VXD concept based on CMOS Pixel Sensors (CPS)
- Status of CPS development for running at $\sqrt{s} \lesssim$ 500 GeV (0.35 μm process)
- Improvements coming from 0.18 μm CMOS process
 - \hookrightarrow fast CMOS sensor (AROM) with μs level timestamping
- First test results of 0.18 μm CPS

 \hookrightarrow perspectives of single bunch tagging possibility

• Summary

CMOS Pixel Sensors for the ILD-VXD

Two types of CMOS Pixel Sensors :

- * Inner layers (\leq 300 cm²) : priority to read-out speed & spatial resolution
 - \hookrightarrow small/stretched pixels (16imes16 / 80 μm^2) with binary charge encoding

 \hookrightarrow t_{r.o.} ~ 50 / 10 μs ; $\sigma_{sp} \lesssim$ 3 / 6 μm

- * Outer layers (\sim 3000 cm²) : priority to power consumption and good resolution
 - \hookrightarrow large pixels (35imes35 μm^2) with 3-4 bits charge encoding

 \hookrightarrow t_{r.o.} \sim 100 $\mu s; ~\sigma_{sp} \lesssim$ 4 μm

- * Total VXD instantaneous/average power < 600/12 W (0.18 μm process)
- 2-sided ladder concept for inner layer : PLUME coll.
 - * Square pixels (16×16 μm^2) on internal ladder face (σ_{sp} < 3 μm)
 - & Elongated pixels (16×64/80 μm^2) on external ladder face (t $_{r.o.}$ \sim 10 μs)
- Final "500 GeV" CPS prototypes : fab. in Winter 2011/12
 - * MIMOSA-30: inner layer prototype with 2-sided read-out $\triangleright \triangleright \triangleright$
 - \hookrightarrow one side : 256 pixels (16×16 μm^2) other side : 64 pixels (16×64 μm^2)
 - * MIMOSA-31: outer layer prototype $\triangleright \ \triangleright \ \triangleright$
 - \hookrightarrow 48 col. of 64 pixels (35imes35 μm^2) ended with 4-bit ADC
 - * prototypes were still fabricated in 0.35 μm CMOS process (cost saving)

CMOS Pixel Sensors: Present Status

- ESTABLISHED ARCHITECTURE :
 - $\circ~$ CMOS process : 0.35 μm , 2-well, 4 ML, 15/20 μm & \sim 1 k $\Omega \cdot cm$ EPI
 - o in-pixel CDS
 - end-of column discri. (binary encoding)
 - single-row rolling shutter read-out
 - sparse data scan on chip periphery
 - \circ 18.4/20.7 μm pitch \Rightarrow \gtrsim 3.3.5 μm resolution
 - \circ used in EUDET BT (115 μs) & STAR-PXL (190 μs)

recent step: Commissioning of 3/10 STAR-PXL completed at RHIC with pp & ArAr collisions in May-June 2013

- New process under study since 2011/12 :
 - $\circ~$ CMOS process : 0.18 μm , 4-well, 6 ML, 15/40 μm & \sim 1-6 k $\Omega \cdot cm$ EPI
 - \circ allows in-pixel discrimination \Rightarrow faster read-out & reduced power, etc.
 - $\circ~$ development driven by ALICE-ITS upgrade & CBM-MVD/FAIR (\sim 20 μs)
 - recent step: Assessment of CMOS proces detection performances & validation of rolling-shutter read-out completed in 2013

STAR-PXL-3SECT INSERTION PP & ARAR RUN IN MAY-JUNE'13

Acceleration of Frame Read-Out

- Motivations for faster read-out:
 - * robustness w.r.t. predicted 500 GeV BG rate (keep inner radius small, ...)
 - * standalone inner tracking capability (e.g. soft tracks)
 - * compatibility with high-energy running: expected beam BG at $\sqrt{s}\gtrsim$ 1 TeV \simeq 3–5imesBG (500 GeV)
- How to accelerate the elongated pixel read-out
 - * elongated pixel dimensions allow for in-pixel discri. \Rightarrow 2 faster r.o.
 - * read out simultaneously 2 or 4 rows \Rightarrow 2-4 faster r.o./side
 - * subdivide pixel area in 4-8 sub-arrays read out in // \Rightarrow 2-4 faster r.o./side
 - \triangleright 0.18 μm process needed: 6-7 ML, design compactness, in-pixel CMOS T, ...
 - * conservative step: 2 discri./col. end (22 μm wide) \Rightarrow simult. 2 row r.o.

Expected VXD performances at 1 TeV (and 0.5 TeV)

Layer	σ_{sp}	t_{int}	Occupancy [%]	Power	
	MIMOSA/AROM	MIMOSA/AROM	1 TeV (0.5 TeV)	inst./average	
VXD-1	3 / 5-6 μm	50 / 2 μs (10 μs)	4.5(0.9) / 0.5(0.1)	250/5 W	
VXD-2	4 / 10 μm	100 / 7 μs (100 μs)	1.5(0.3) / 0.2(0.04)	120/2.4 W	
VXD-3	4 / 10 μm	100 / 7 μs (100 μs)	0.3(0.06) / 0.05(0.01)	200/4 W	

ALICE-ITS Upgrade

- 2 alternative sensors developped :
 - * Baseline : **ASTRAL** (in-pixel discri.)
 - $\hookrightarrow \gtrsim$ 15 μs , 85 mW/cm²
 - * Back-up : **MISTRAL** (end-of-col. discri.) $\hookrightarrow \gtrsim 30 \ \mu s$, < 200 mW/cm²
- All main components investigated in 2013 :
 - * sensing node properties
 - * in-pixel ampli+CDS
 - * in-pixel discriminators
 - * rolling-shutter with end-of-col. discri.
 - * simultaneous 2-row read-out
 - * sparse data scan
 - * programmable chip steering (JTAG)

CPS fabricated in 2012/13 in 0.18 μm Process

Outcome of 2012 Exploration of the 0.18 μm Process

- STEPS VALIDATED IN 2012 :
 - * Several in-pixel amplifier variants lead to satisfactory SNR & det. eff. ($20 \times 20 \ \mu m^2$) incl. after 1 MRad & $10^{13} n_{eq}$ /cm² at 30° C
 - * Results pres. at VCI-2013 (J. Baudot)
- CALL FOR IMPROVEMENT :
 - * Pixel circuitry noise :
 - tail due few noisy pixels
 - \hookrightarrow attributed to RTS noise

MISTRAL : In-Pixel + Read-Out Circuitry Studies

- MIMOSA-22THRa1 : single row read-out (\equiv MIMOSA-28/STAR-PXL)
 - * 128 col. of 320 pixels (22×22/33 μm^2) ended with a discri. + 8 col. without discri. for tests
 - * In-pixel CDS in 4 variants (2 with enlarged pre-amp T gate against RTS noise)
 - * Rolling-shutter (single row) read-out \rightarrow t_{int} \simeq 50 μs

MISTRAL : In-Pixel + Read-Out Circuitry Studies

- MIMOSA-22THR threshold scans of single & double-row read-out to derive TN and FPN
- TN of single-row array:
 - * S4 pre-amp T gate : L/W = 0.18/1 μm \hookrightarrow TN \sim 17 e⁻ ENC + tail
 - * S2 & S1 pre-amp T gate : L/W = 0.36/1 & 2 μm \hookrightarrow TN \sim 16–18 e⁻ ENC with minor/no tail
 - ⇒ Effective mitigation of noise tail by doubling input T gate dimensions
- FPN of 2-row r.o. (2 discri./col.):
 - * Concern: analog/digital signals coupling \Rightarrow FPN \rightarrow
 - ★ Measured FPN (dble-row) \leq 5 e⁻ENC → FPN (sgle-row) \leq 3 e⁻ENC
 - \Rightarrow Marginal noise increase

S1 (L & W increase) S2 (L increase) S4 (P25 mi32Ter) HR20 >2kO HR18 >1kO HR20 >2kO Low Res HR18 >1kO HR20 >2kO Low Res HR18 >1kO Low Res TN: 695 µV TN: 670 μV TN: 682 µV TN: 732 μV TN: 692µV TN: 702 μV TN: 1080 µV TN: 945µV TN: 980 µV FPN: 168 µV FPN:176µV FPN: 175 µV FPN: 178 µV FPN: 183uV FPN: 175 µV FPN: 207 µV FPN: 208uv FPN: 212 µV

1 discri./col.

2 discri./col.

SNR of Pixel Array

- MIMOSA-22THRa1 exposed to \sim 4.4 GeV electrons (DESY) in August 2013
- Analog outputs of 8 test columns (no discri.)

 \hookrightarrow SNR with HR-18 epitaxy, at T=30 $^{\circ}$ C

- * Noise determination with beamless data taking
- * Ex: S2 (T gate L/W=0.36/1 μm against RTS noise) S1 (T gate L/W=0.36/2 μm against RTS noise)
- Results :
 - * Charge collected in seed pixel $\simeq 550~{\rm e^-}$
 - * Binary read-out : detection efficiency of S1 & S2 \gtrsim 99.5% while Fake rate \lesssim O(10⁻⁵) for Discriminator Thresholds in range \sim 5N – 8N
 - Mitigation of Fake Hits due to RTS
 noise fluctuations confirmed
 - * A few 10^{-3} residual inefficiency calls for in-pixel circuitry optimisation
 - \Rightarrow new design in perspective of next submissions

Pixel Optimisation : Epitaxial Layer and Sensing Node

- Pixel charge coll. perfo. for HR-18 & VHR-20 (no in-pixel CDS) :
 - * SNR distributions \rightarrowtail MPV & low values tail
 - * 22imes33 μm^2 (2T) pixels at 30 $^\circ$ C
 - \Rightarrow Results :
 - $\diamond~$ only \sim 0.1 % of cluster seeds exhibit SNR \lesssim 7–8
 - \diamond SNR(VHR-20) \sim 5-10% higher than SNR(HR-18)

- Pixel charge coll. perfo. for 2 diff. sensing nodes:
 - * 10.9 μm^2 large sensing diode
 - * 8 μm^2 cross-section sensing diode underneath 10.9 μm^2 large footprint

\Rightarrow Results :

♦ 8 µm² diode features nearly 20% higher SNR(MPV)
& much less pixels at small SNR (e.g. SNR <10)
→ Q_{clus} ~ 1350/1500 e⁻ for 8/10.9 µm²
⇒ marginal charge loss with 8 µm² diode

MIMOSA 34, Signal/Noise

ASTRAL : AROM-0 Pixel Design

- Chip contents :
 - * 2 different sub-arrays of 32 \times 32 pixels with single row read-out

 \Rightarrow t_{Int} = 3.2 μs

- * 1 sub-array of 16×16 pixels with double-row read-out
- * pixel dimensions : 22 \times 33 μm^2
- 3 alternative pixel schematics :
 - * sensing node & pre-amp as in MIMOSA-22THRa1 pixel (P25)
 - * various amplification schemes (offset compensation alternatives)
 - * various clamping circuitry implementations and designs
- Design (layout) constraints wrt end-of-column discriminators :
 - * originate from limited space & power saving
 - * matching more delicate \Rightarrow FPN
 - * less offset compensation capacitors \Rightarrow FPN
 - * discriminator alternatively switched on & off \Rightarrow TN, FPN

Version 2

ASTRAL : AROM-0 Test Results

- Tests realised in lab :
 - * Characterise analog output (after pre-amp)
 - * Characterise digital output (after discri)
 - * Assess TN and FPN at room temperature

and nominal frequency (\Rightarrow t_{Int} = 3.2 μ s)

• **Preliminary results** (compared to MIMOSA-22THRa1/S4) :

	Chip	TN(pix)	TN(pix) TN(discri)		Total N	
> [AROM-0 MIMOSA-22THRa1	\lesssim 1 mV \lesssim 1 mV	\sim 1 mV \ll 1 mV	\lesssim 0.5 mV \lesssim 0.2 mV	\gtrsim 1.5 mV \leq 1.mV	

- Comments on results :
 - times TN (discri) is too high by factor of \sim 2 (only)
 - * FPN (discri) is almost acceptable but it may increase when moving to large area
 - * Total noise is \sim 1.5-2 times too high \Rightarrow AROM-1 in fabrication to validate noise reduction approach

Zero Suppression Logic (SUZE02)

■ AD conversion (pixel-level or column-level) outputs are connected to inputs of SUZE

■ More efficient encoding then the previous one (SUZE01) implemented in ULTIMATE sensor

- ⓑ It is sizable and suitable to process the binary information coming from a 1 cm large pixel array
 - Hit density of ~100 hits/cm² + safety factor of 3-4
 - Compression factor: 1 to 4 order of magnitudes
- ✤ It searches windows of 4x5 pixels which contain hit cluster information
- Sesults are stored in 4 SRAM blocks allowing either continuous or triggered readout
- Sparsified data are multiplexed onto a serial LVDS output
 - Prototype data rate: 320 Mbit/s per channel (1 or 2 channels in SUZE02)
- Preliminary test results: SUZE02 is functional for main configurations @ full speed
 - ✤ Full sequence of signal processing steps were validated using various types of patterns
 - SEU has to be evaluated
- For MISTRAL / ASTRAL, a data rate of 0.5-1 Gbit/s is required
 - b One channel output per sensor
 - INFN Torino is working on data transmission up to 2 Gbit/s
- Next development step needs trigger's specifications

Stretched Pixels for Time Stamping

• Motivation for LARGE pixels : reduced number of pixels per column

 \Rightarrow shorter read-out time & coarser spatial resolution

- **Difficulty :** keep high CCE (all over the pixel) without substantial (capacitive) noise increase and gain loss
- Results : tests with 4.4 GeV electrons, no in-pixel CDS
 - * SNR(MPV) \simeq 42.1 \pm 0.7 \Rightarrow $\epsilon_{det} \simeq$ 100 %
 - * cluster multiplicity (22×66) \simeq cluster multiplicity (22×33) \simeq 3 (mean)

Spatial Resolution

- Beam test (analog) data used to simulate binary charge encoding :
 - * Apply common SNR cut on all pixels using <N>

 \hookrightarrow simulate effect of final sensor discriminators

* Evaluate single point resolution (charge sharing) and detection efficiency vs *discriminator threshold* for 20x20; 22x33, 20x40, 22x66 μm^2 pixels

• Comparison of 0.18 μm technology (> 1 $k\Omega \cdot cm$) with 0.35 μm technology (\lesssim 1 $k\Omega \cdot cm$)

Process ⊳	0.35 μm	0.18 μm				
Pixel Dim. [μm^2]	20.7×20.7	20×20	22×33	20×40	22×66	
$\sigma^{bin}_{sp}[\mu m]$	3.7 ± 0.1	3.2 ± 0.1	\sim 5	5.4 ± 0.1	\sim 7	

Long Range Plan Addressing Stretched Pixel

- Resolution plane:
 - Pixel pitches: ex. 17x17 μ m²
 - 640 rows
 - Readout time ~50 ns/row → 32 μs
- Time plane
 - Pixel pitches: ex. 17x1024 μm^2
 - 10 rows
 - − Readout time ~50 ns/row, → 500 ns

SUMMARY

- CPS are getting validated in subatomic physics experiments
 - \hookrightarrow STAR-PXL: 400 sensors in 0.35 μm process, 350 Mpixels, 0.37 % X $_0$, 190 μs , 3.7 μm , 160 mW/cm 2
- Recently addressed 0.18 μm CMOS process offers perspective of faster read-out suited to :
 - 1 TeV ILC running conditions
 - standalone Si tracking based on track seeds in VXD
 - Added value : substantial improvement of radiation tolerance
- Preliminary test results of 0.18 μm CMOS technology indicate that it is the 1st CMOS process allowing to come close to the real CPS potential :
 - \circ innermost layer : < 3 μm and \lesssim 2 μs \circ outer layers : < 4 μm and \lesssim 10 μs
 - $\,\circ\,$ VXD power consumption : < 600 W (inst.) / < 12 W (average)

• 0.18 μm CPS development sustained by ALICE-ITS, CBM-MVD, AIDA-BT :

- \circ 2012: validation of charge sensing properties \checkmark
 - $\,\circ\,$ 2013: validation of upstream and downstream sensor elements $\checkmark\,$
 - \circ 2014/15: validation of complete sensor architecture with "1 cm²" MISTRAL/ASTRAL prototype
 - 2015/16: pre-production of MISTRAL/ASTRAL sensor for ALICE and CBM
 - \hookrightarrow 2017-19: adapt MISTRAL/ASTRAL to ILC vertex detector \rightarrowtail BUNCH TAGGING ?
- Experience getting accumulated on system integration aspects within STAR & ALICE environments

State-of-the-Art: MIMOSA-28 for the STAR-PXL

- Details on STAR-PXL in talk of G. Contin
- Main characteristics of ULTIMATE (\equiv MIMOSA-28):
 - * rolling shutter read-out derived from EUDET BT chip: MIMOSA-26
 - * 0.35 μm process with high-resistivity epitaxial layer
 - * column // architecture with in-pixel cDS & amplification
 - * end-of-column discrimination & binary charge encoding
 - * on-chip zero-suppression
 - * active area: 960 colums of 928 pixels (19.9imes19.2 mm²)
 - * pitch: 20.7 $\mu m \rightarrow \sim$ 0.9 million pixels \hookrightarrow charge sharing $\Rightarrow \sigma_{sp} \gtrsim$ 3.5 μm
 - * JTAG programmable

*
$$t_{r.o.} \lesssim$$
 200 μs (\sim 5×10 3 frames/s) \Rightarrow suited to >10 6 part./cm 2 /s

- * 2 outputs at 160 MHz
- $st \sim$ 150 mW/cm 2 power consumption
- * N \leq 15 e⁻ ENC at 30-35° C
- $* \epsilon_{det}$ versus fake hit rate \longrightarrow
- * Radiation tolerance : $3 \cdot 10^{12} n_{eq}$ /cm² & 150 kRad at 30-35°C
- * Detector construction under way (40 ladders made of 10 sensors)
- ▷▷▷ 1st step: Commissioning of 3/10 of detector completed at RHIC with pp collisions in May-June 2013

Mimosa 28 - epi 20 um - NC

Evolving towards an Optimal CMOS Process

• Motivation: 0.35 μm process used up to now does not allow to fully exploit the potential of CPS

Main limitations
of presently used
0.35 μm CMOS
fabrication process:
(not restricted to
ILC specs)

	CMOS process	In-pixel	Read-out	Power	Insensitive	TID	Data
d	fab. parametres	circuitry	speed	consum.	areas	(> ILC)	throughput
	Feature size	Х	Х	Х	Х	Х	
ess:	Planar techno.	Х	Х	Х		x	
	Nb (metal layers)	Х	Х		Х		
	Clock frequency				Х		Х

- Moving to a 0.18 μm imaging CMOS process (Tower/Jazz SC):
 - * Deep P-well (quadruple well techno.) \Rightarrow small-pitch in-pixel discriminators
 - * 6 metal layers (instead of 4) \Rightarrow in-pixel discriminators, avoids insensitive zones
 - st Epitaxial layer : thickness \sim 18–40 μm and resistivity \sim 1–6 k $\Omega \cdot cm$
 - * Stiching \Rightarrow multi-chip slabs (yield ?)
 - \Rightarrow process very well suited to the VXD specifications
- Prototyping started in Summer 2011, driven by ILD-VXD, CBM-MVD, ALICE-ITS, etc.

Applications of CPS : ALICE-ITS Upgrade

- ITS upgrade : scheduled for "2017-18" LHC long shutdown
 - * see talk of M. Sitta
 - * exploits space left by replacement of beam pipe
 with small radius (19 mm) section
 - * addition of L0 at \sim 22 mm radius to present ITS & replacement of (at least) inner part of present ITS
 - * 1st tracker entirely omposed of pixel sensors :
 - \diamond 7 layers with pixels : \gtrsim 9 m², O(10¹⁰) pixels !
 - $\diamond~$ material budget of inner layers \sim 0.3 % X_{0}
- Differences w.r.t. ULTIMATE/MIMOSA-28 :

* ~ 0.25/1 MRad & 0.3/1·10¹³ n_{eq}/cm² at T = 30°C (target values) \hookrightarrow 0.18 μm 4-well HR-epi techno. (instead of 0.35 μm 2-well hR-epi) * ~ 1×3 cm² large sensitive area (instead of 2×2 cm²) * parallelised rolling-shutter (pot. in-pixel discri.) \longrightarrow ~ 10–30 μs * 1 or 2 output pairs at \gtrsim 300 MHz (instead of 1 output pair at 160 MHz)

* $\sigma_{sp}\sim$ 4 μm ; ladders \sim 0.3 % X $_0$

- ightarrow
 ightarro
- ▷▷▷ 2 alternative sensors developed at IPHC : MISTRAL (end-of-col discri) & ASTRAL (in-pixel discri)
- Extension to CBM-MVD → see talk of M. Deveaux at VERTEX-13