SUSY precission studies at the ILC - the experimental angle

Mikael Berggren¹

¹DESY, Hamburg

LCWS, Tokyo, Japan, November 2013

Mikael Berggren (DESY)

SUSY precission studies

LCWS, Nov 2013 1 / 29

< ロ > < 同 > < 回 > < 回 >

Outline

- 2 SUSY, as an experimentalist sees it
- 3 SUSY Observables

4 A bench-mark point

- $\tilde{\tau}$ channels
- Channels with µ:s

4 3 > 4 3

What does SUSY look like experimentally ? What are the problems to face ?

Generically:

- $e^+e^- \rightarrow \tilde{X}\bar{\tilde{X}} \rightarrow X\bar{X}\tilde{Y}\bar{\tilde{Y}}$
- \tilde{Y} might be stable, or further decay, $\tilde{Y} \rightarrow Y \tilde{U}$.
- Finally, one ends up with SM particles, and a lightest SUSY particle, the LSP.
- If R-parity (RP) is conserved, the LSP is stable. From cosmology and cosmic rays, this particle must be neutral and un-coloured.
- Ie.: Experimentally, it's like a heavy "neutrino".

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What does SUSY look like experimentally ? What are the problems to face ?

Generically:

- $e^+e^- \rightarrow \tilde{X}\bar{\tilde{X}} \rightarrow X\bar{X}\tilde{Y}\bar{\tilde{Y}}$
- \tilde{Y} might be stable, or further decay, $\tilde{Y} \rightarrow Y \tilde{U}$.
- Finally, one ends up with SM particles, and a lightest SUSY particle, the LSP.

< ロ > < 同 > < 回 > < 回 >

- If R-parity (RP) is conserved, the LSP is stable. From cosmology and cosmic rays, this particle must be neutral and un-coloured.
- Ie.: Experimentally, it's like a heavy "neutrino".

What does SUSY look like experimentally ? What are the problems to face ?

Generically:

- $e^+e^- \rightarrow \tilde{X}\bar{\tilde{X}} \rightarrow X\bar{X}\tilde{Y}\bar{\tilde{Y}}$
- \tilde{Y} might be stable, or further decay, $\tilde{Y} \to Y \tilde{U}$.
- Finally, one ends up with SM particles, and a lightest SUSY particle, the LSP.

- If R-parity (RP) is conserved, the LSP is stable. From cosmology and cosmic rays, this particle must be neutral and un-coloured.
- Ie.: Experimentally, it's like a heavy "neutrino".

What does SUSY look like experimentally ? What are the problems to face ?

Generically:

- $e^+e^- \rightarrow \tilde{X}\bar{\tilde{X}} \rightarrow X\bar{X}\tilde{Y}\bar{\tilde{Y}}$
- \tilde{Y} might be stable, or further decay, $\tilde{Y} \to Y \tilde{U}$.
- Finally, one ends up with SM particles, and a lightest SUSY particle, the LSP.

- If R-parity (RP) is conserved, the LSP is stable. From cosmology and cosmic rays, this particle must be neutral and un-coloured.
- Ie.: Experimentally, it's like a heavy "neutrino".

Therefore:

- Conserved RP : Missing energy from the LSP, particle id of the SM products.
- Violated RP (RPV) : LSP *can* be charged and/or coloured, as the cosmological arguments evaporates. Odd signatures either a log-lived LSP, or an LSP that decays in the detector. *Won't talk about this.*

Furthermore:

- Amount of missing energy very important.
- Depends on the mass-difference between the last SUSY particle in the chain and the LSP.
- There is always an NLSP (Next to Lightest SUSY Particle), which is special:
 - It can only decay to it's SM-partner and the LSP.

< ロ > < 同 > < 回 > < 回 >

Therefore:

- Conserved RP : Missing energy from the LSP, particle id of the SM products.
- Violated RP (RPV) : LSP *can* be charged and/or coloured, as the cosmological arguments evaporates. Odd signatures either a log-lived LSP, or an LSP that decays in the detector. *Won't talk about this*.

Furthermore:

- Amount of missing energy very important.
- Depends on the mass-difference between the last SUSY particle in the chain and the LSP.
- There is always an NLSP (Next to Lightest SUSY Particle), which is special:
 - It can only decay to it's SM-partner and the LSP.

< ロ > < 同 > < 回 > < 回 >

Therefore:

- Conserved RP : Missing energy from the LSP, particle id of the SM products.
- Violated RP (RPV) : LSP *can* be charged and/or coloured, as the cosmological arguments evaporates. Odd signatures either a log-lived LSP, or an LSP that decays in the detector. *Won't talk about this*.

Furthermore:

- Amount of missing energy very important.
- Depends on the mass-difference between the last SUSY particle in the chain and the LSP.
- There is always an NLSP (Next to Lightest SUSY Particle), which is special:
 - It can only decay to it's SM-partner and the LSP.
 - It can be pair-produced.

Therefore:

- Conserved RP : Missing energy from the LSP, particle id of the SM products.
- Violated RP (RPV) : LSP *can* be charged and/or coloured, as the cosmological arguments evaporates. Odd signatures either a log-lived LSP, or an LSP that decays in the detector. *Won't talk about this*.

Furthermore:

- Amount of missing energy very important.
- Depends on the mass-difference between the last SUSY particle in the chain and the LSP.
- There is always an NLSP (Next to Lightest SUSY Particle), which is special:
 - It can only decay to it's SM-partner and the LSP.
 - It can be pair-produced.

Therefore:

- Conserved RP : Missing energy from the LSP, particle id of the SM products.
- Violated RP (RPV) : LSP *can* be charged and/or coloured, as the cosmological arguments evaporates. Odd signatures either a log-lived LSP, or an LSP that decays in the detector. *Won't talk about this*.

Furthermore:

- Amount of missing energy very important.
- Depends on the mass-difference between the last SUSY particle in the chain and the LSP.
- There is always an NLSP (Next to Lightest SUSY Particle), which is special:
 - It can only decay to it's SM-partner and the LSP.
 - It can be pair-produced.

Therefore:

- Conserved RP : Missing energy from the LSP, particle id of the SM products.
- Violated RP (RPV) : LSP *can* be charged and/or coloured, as the cosmological arguments evaporates. Odd signatures either a log-lived LSP, or an LSP that decays in the detector. *Won't talk about this*.

Furthermore:

- Amount of missing energy very important.
- Depends on the mass-difference between the last SUSY particle in the chain and the LSP.
- There is always an NLSP (Next to Lightest SUSY Particle), which is special:
 - It can only decay to it's SM-partner and the LSP.
 - It can be pair-produced.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

So, what we look for and like to measure is:

- NLSP pairs ⇔ Missing energy and momentum + pairs of the SM partner (τ̃₁ gives τ, ẽ gives e, τ̃ gives t gives jet, ...)
 - Note:
 - Amount of missing stuff might spen a work reger Eq. small mass-difference between heavy sparticles gives large missing E, but a little missing p.
 - In M. Silvie a basico, SM partner is a IV(3, possibly iso of shall. At small mass differences, the set of SM particles might be non-obvious.
- Cascade decays: Still Missing energy and momentum, but id of SM particles can be mixed.

< ロ > < 同 > < 回 > < 回 >

So, what we look for and like to measure is:

- NLSP pairs ⇔ Missing energy and momentum + pairs of the SM partner (τ̃₁ gives τ, ẽ gives e, t̃ gives t gives jet, ...)
 - Note:
 - Amount of missing stuff might span a wide range. Eg. small mass-difference between heavy sparticles gives large missing E, but little missing p.
 - If NLSP is a bosino, SM partner is a IVB, possibly far off-shell. At small mass differences, the set of SM particles might be non-obvious.
- Cascade decays: Still Missing energy and momentum, but id of SM particles can be mixed.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

So, what we look for and like to measure is:

- NLSP pairs ⇔ Missing energy and momentum + pairs of the SM partner (τ̃₁ gives τ, ẽ gives e, t̃ gives t gives jet, ...)
 - Note:
 - Amount of missing stuff might span a wide range. Eg. small mass-difference between heavy sparticles gives large missing E, but little missing p.
 - If NLSP is a bosino, SM partner is a IVB, possibly far off-shell. At small mass differences, the set of SM particles might be non-obvious.
- Cascade decays: Still Missing energy and momentum, but id of SM particles can be mixed.

So, what we look for and like to measure is:

- NLSP pairs ⇔ Missing energy and momentum + pairs of the SM partner (τ̃₁ gives τ, ẽ gives e, t̃ gives t gives jet, ...)
 - Note:
 - Amount of missing stuff might span a wide range. Eg. small mass-difference between heavy sparticles gives large missing E, but little missing p.
 - If NLSP is a bosino, SM partner is a IVB, possibly far off-shell. At small mass differences, the set of SM particles might be non-obvious.
- Cascade decays: Still Missing energy and momentum, but id of SM particles can be mixed.

Bosino signatures

Depending on order of μ , M_1 , and M_2 , and on GUT-scale U(1) \otimes SU(2) mass-unification:

- $\mu << M_1, M_2$:
 - LSP and NLSP both higgsino, very low ΔM.
- *M*₂ < *M*₁ << μ :
 - LSP Wino, NLSP is $\tilde{\chi}_1^{\pm},$ and is close.
- $M_1 < M_2 << \mu$:
- If GUT $M_1 M_2$ relation, $\Delta M < M_{LSP}$.

< 17 ▶

Background from SM:

• Real missing energy + pair of SM-particles = di-boson production, with neutrinos:

- $WW \rightarrow \ell \nu \ell \nu$
- $ZZ \rightarrow f\bar{f}\nu\nu$
- Fake missing energy + pair of SM-particles = $\gamma\gamma$ processes, ISR, single IVB.
 - $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-f\bar{f}$, with both e^+e^- un-detected.
 - $e^+e^- \rightarrow e^+e^- \rightarrow ff\gamma$, with γ un-detected.

Background from SM:

- Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
 - $WW \rightarrow \ell \nu \ell \nu$
 - $ZZ \rightarrow f\bar{f}\nu\nu$
- Fake missing energy + pair of SM-particles = $\gamma\gamma$ processes, ISR, single IVB.
 - $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-f\bar{f}$, with both e^+e^- un-detected.
 - $e^+e^- \rightarrow e^+e^- \rightarrow ff\gamma$, with γ un-detected.

Background from SM:

- Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
 - $WW \rightarrow \ell \nu \ell \nu$
 - $ZZ \rightarrow f\bar{f}\nu\nu$
- Fake missing energy + pair of SM-particles = $\gamma\gamma$ processes, ISR, single IVB.
 - $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-f\bar{f}$, with both e^+e^- un-detected.
 - $e^+e^- \rightarrow e^+e^- \rightarrow f\bar{f}\gamma$, with γ un-detected.

Background from SM:

- Real missing energy + pair of SM-particles = di-boson production, with neutrinos:
 - $WW \rightarrow \ell \nu \ell \nu$
 - $ZZ \rightarrow f\bar{f}\nu\nu$
- Fake missing energy + pair of SM-particles = $\gamma\gamma$ processes, ISR, single IVB.
 - $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-f\bar{f}$, with both e^+e^- un-detected.
 - $e^+e^- \rightarrow e^+e^- \rightarrow f\bar{f}\gamma$, with γ un-detected.

- When data starts coming in, what is is first light ?
- How do we quickly determine a set of approximate model parameters ?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach ?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.
- ...

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- When data starts coming in, what is is first light ?
- How do we quickly determine a set of approximate model parameters ?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach ?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.
- ...

- When data starts coming in, what is is first light ?
- How do we quickly determine a set of approximate model parameters ?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach ?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.
- ...

- When data starts coming in, what is is first light ?
- How do we quickly determine a set of approximate model parameters ?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach ?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.

- When data starts coming in, what is is first light ?
- How do we quickly determine a set of approximate model parameters ?
- What is then the optimal use of beam-time in such a scenario ?
- And in a staged approach ?
- Spectrum in continuum vs. threshold-scans?
- Special points, eg. between $\tilde{\tau}_1 \tilde{\tau}_2$ and $\tilde{\tau}_2 \tilde{\tau}_2$ thresholds.
- Clean vs. high cross-section.
- ...

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

So, suppose we have observed SUSY. What kind of numbers can we extract from the data ?

- Two-body decays: spectra w/ end-points
 - Function of the masses and E_{CMS}.
- Cross-section in continuum
 - Function of mass of produced sparticle, it's mixing, and of E_{CMS} and beam polarisation.
- Angular distribution of seen stuff
 - Function of sparticle spin, mass, s vs. t-channel and E_{CMS}.
- Cross-section with threshold scan
 - Function of mass of produced sparticle.
- Branching ratios
 - Nature of sparticles.
- Differential cross-section
 - Scalar vs fermion vs t-channel.

So, suppose we have observed SUSY. What kind of numbers can we extract from the data ?

- Two-body decays: spectra w/ end-points
 - Function of the masses and E_{CMS}.
- Cross-section in continuum
 - Function of mass of produced sparticle, it's mixing, and of E_{CMS} and beam polarisation.
- Angular distribution of seen stuff
 - Function of sparticle spin, mass, s vs. t-channel and E_{CMS}.
- Cross-section with threshold scan
 - Function of mass of produced sparticle.
- Branching ratios
 - Nature of sparticles.
- Differential cross-section
 - Scalar vs fermion vs t-channel.

イロト イポト イヨト イヨト 三日

So, suppose we have observed SUSY. What kind of numbers can we extract from the data ? And what do they tell us ?

- Two-body decays: spectra w/ end-points
 - Function of the masses and E_{CMS}.
- Cross-section in continuum
 - Function of mass of produced sparticle, it's mixing, and of E_{CMS} and beam polarisation.
- Angular distribution of seen stuff
 - Function of sparticle spin, mass, s vs. t-channel and E_{CMS}.
- Cross-section with threshold scan
 - Function of mass of produced sparticle.
- Branching ratios
 - Nature of sparticles.
- Differential cross-section
 - Scalar vs fermion vs t-channel.

イロト イポト イヨト イヨト 三日

So, suppose we have observed SUSY. What kind of numbers can we extract from the data ? And what do they tell us ?

- Two-body decays: spectra w/ end-points
 - Function of the masses and E_{CMS}.
- Cross-section in continuum
 - Function of mass of produced sparticle , it's mixing, and of E_{CMS} and beam polarisation.
- Angular distribution of seen stuff
 - Function of sparticle spin, mass, s vs. t-channel and E_{CMS}.
- Cross-section with threshold scan
 - Function of mass of produced sparticle.
- Branching ratios
 - Nature of sparticles.
- Differential cross-section
 - Scalar vs fermion vs t-channel.

SUSY Observables

Observables: Pair-production, two-body decay

The spectrum of E'_{Y} has end-points the rectangular distribution $E_{Y} \in \left[\frac{E_{Beam}}{2}\left(1 - (M_{U}/M_{X})^{2}\right)(1-\beta), \frac{E_{Beam}}{2}\left(1 - (M_{U}/M_{X})^{2}\right)(1+\beta)\right].$ $\beta = \sqrt{1 - \left(\frac{M_{X}}{E_{Beam}}\right)^{2}}$

If Y is a sfremion or a neutralino, in addition the spectrum is flat between the end-points. Then:

- Average is $\frac{E_{Beam}}{2} \left(1 \left(M_U/M_X\right)^2\right)$,
- the width is $E_{Beam} \left(1 \left(M_U/M_X\right)^2\right) \beta$;
- the standard deviation is the width divided by $\sqrt{12}$.

SUSY Observables

Observables: Pair-production, two-body decay

The spectrum of E'_{Y} has end-points the rectangular distribution $E_{Y} \in \left[\frac{E_{Beam}}{2} \left(1 - \left(\frac{M_{U}}{M_{X}}\right)^{2}\right) \left(1 - \beta\right), \frac{E_{Beam}}{2} \left(1 - \left(\frac{M_{U}}{M_{X}}\right)^{2}\right) \left(1 + \beta\right)\right].$ $\beta = \sqrt{1 - \left(\frac{M_{X}}{E_{Beam}}\right)^{2}}$

If Y is a sfremion or a neutralino, in addition the spectrum is flat between the end-points. Then:

- Average is $\frac{E_{Beam}}{2} \left(1 \left(M_U/M_X\right)^2\right)$,
- the width is $E_{Beam} \left(1 \left(M_U/M_X\right)^2\right) \beta$;
- the standard deviation is the width divided by $\sqrt{12}$.

SUSY Observables

Observables: Pair-production, two-body decay

Mikael Berggren (DESY)

Observables: Pair-production, two-body decay

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if *E_{beam}* >> *M_X*, there is just one observable (low edge becomes 0, width becomes average/2), so one should not operate too far above threshold !
- Note that there are two decays in each event: two measurements per event.
- Also note that there are not enough measurements to make a constrained fit, even assuming that the two SUSY particles in the two decays are the same: (2 × 4 unknown components of 4-momentum (=8)) (total E and p conservation (=4) + 2 equal-mass constraints) = 2 remaining unknown (=4, +2, +2) = -0

Mikael Berggren (DESY)

SUSY precission studies

LCWS, Nov 2013 12 / 29

Observables: Pair-production, two-body decay

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if *E_{beam}* >> *M_X*, there is just one observable (low edge becomes 0, width becomes average/2), so one should not operate too far above threshold !
- Note that there are two decays in each event: two measurements per event.
- Also note that there are not enough measurements to make a constrained fit, even assuming that the two SUSY particles in the two decays are the same: (2 × 4 unknown components of 4-momentum (=8)) (total E and p conservation (=4) + 2 equal-mass constraints) = 2 remaining unknown (=4, +2, +2, +2, +2)

Mikael Berggren (DESY)

SUSY precission studies

LCWS, Nov 2013 12 / 29

Observables: Pair-production, two-body decay

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if *E_{beam}* >> *M_X*, there is just one observable (low edge becomes 0, width becomes average/2), so one should not operate too far above threshold !
- Note that there are two decays in each event: two measurements per event.
- Also note that there are not enough measurements to make a constrained fit, even assuming that the two SUSY particles in the two decays are the same: (2 × 4 unknown components of 4-momentum (=8)) (total E and p conservation (=4) + 2 equal-mass constraints) = 2 remaining unknown (=4) + 2 = 2

Mikael Berggren (DESY)

SUSY precission studies
Observables: Pair-production, two-body decay

- So, there are two SUSY parameters, and two independent observables in the spectrum.
- Any pair of observables can be chosen, edges, average, standard deviation, width, ...
- Which choice is the best depends on the situation.
- Just a bit of algebra to extract the two SUSY masses.
- Note that if *E_{beam}* >> *M_X*, there is just one observable (low edge becomes 0, width becomes average/2), so one should not operate too far above threshold !
- Note that there are two decays in each event: two measurements per event.

Mikael Berggren (DESY)

Observables: Pair-production, two-body decay

However:

- If the masses are known from other measurements, there are enough constraints.
- Then the events can be completely reconstructed ...
- ... and the angular distributions both in production and decay can be measured.
- From this the spins can be determined, which is essential to determine that what we are seeing is SUSY.

Furthermore:

- Looking at more complicated decays, such as cascade decays, there are enough constraints if some (but not all) masses are known.
- Allows to reconstruct eg. the slepton mass in \$\tilde{\chi}_2^0 → \tilde{l} \eta → \eta \eta \tilde{\chi}_1^0\$ if chargino and LSP masses are known.
- Order-of-magnitude better mass resolution.
 <□><@><@><≥><≥><

Observables: Pair-production, two-body decay

However:

- If the masses are known from other measurements, there are enough constraints.
- Then the events can be completely reconstructed ...
- ... and the angular distributions both in production and decay can be measured.
- From this the spins can be determined, which is essential to determine that what we are seeing is SUSY.

Furthermore:

- Looking at more complicated decays, such as cascade decays, there are enough constraints if some (but not all) masses are known.
- Allows to reconstruct eg. the slepton mass in [˜]χ⁰₂ → ℓℓ × ℓℓ [˜]χ⁰₁ if chargino and LSP masses are known.
- Order-of-magnitude better mass resolution.

Mikael Berggren (DESY)

SUSY precission studies

3 X X 3 X 3

SUSY Observables

Observables: Pair-production, two-body decay

However:

If the masses are known from other measurements, there are

200 d) Constant Meah 175 30 0.8335E-0 150 25 125 20 100 15 75 10 50 5 25

 $\stackrel{160}{M_{slepton}} \stackrel{\overline{180} \quad 200}{[GeV/c^2]}$

120

140

900

SUSY precission studies

144.9

145 145

M_{slepton} [GeV/c²]

144 5 144 6 144

25.56

144.7

But this is not all !

- The cross-section in e⁺e⁻ →XX close to threshold depends both on coupling, spin and kinematics (= β).
- The distribution of the angle between the two SM-particles depends on β, in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle → properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: In τ̃ → τχ̃₁⁰ → Xν_τχ̃₁⁰.

But this is not all !

- The cross-section in e⁺e⁻ →XX close to threshold depends both on coupling, spin and kinematics (= β).
- The distribution of the angle between the two SM-particles depends on β, in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle → properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: In τ̃ → τχ̃₁⁰ → Xν_τχ̃₁⁰.

But this is not all !

- The cross-section in e⁺e⁻ →XX close to threshold depends both on coupling, spin and kinematics (= β).
- The distribution of the angle between the two SM-particles depends on β, in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle → properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: In τ̃ → τχ̃₁⁰ → Xν_τχ̃₁⁰.

くロン 不通 とくほ とくほ とうほう

But this is not all !

- The cross-section in e⁺e⁻ →XX close to threshold depends both on coupling, spin and kinematics (= β).
- The distribution of the angle between the two SM-particles depends on β, in a complicated, but calculable way.
- The cross-section is different for L and R SUSY particles.
- So checking how much the cross-section changes when switching beam-polarisations measures mixing.
- Measure the helicity of the SM particle → properties of the particles in the decay, ie. in addition to the produced X, also the invisible U. In one case this is possible: In τ̃ → τ χ̃₁⁰ → Xν_τ χ̃₁⁰.

Example: SPS1a'/STC4

(See also D. Krücker's talk on Tuesday)

STC4-8

- 11 parameters.
- Separate gluino
- Higgs, un-coloured, and coloured scalar parameters separate

Parameters chosen to deliver all constraints (LHC, LEP, cosmology, low energy).

At E_{CMS} = 500 GeV:

- All sleptons available.
- No squarks.
- Lighter bosinos, up to $\tilde{\chi}^0_3$ (in $e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_3$)

(For STC4-8, see H. Baer, J. List, arXiv:1307:0782. For SPS1a', see J. List, P. Bechtle, P. Schade, M.B., PRD 82,no5 (2010), arXiv:0908.0876)

Mikael Berggren (DESY)

STC4 mass-spectrum

Mikael Berggren (DESY)

LCWS, Nov 2013 16 / 29

크

イロト イヨト イヨト イヨト

STC4 mass-spectrum

Mikael Berggren (DESY)

LCWS, Nov 2013 16 / 29

2

イロト イヨト イヨト イヨト

Channels and observables at 250, 350 and 500 GeV

Channel	Threshold	Available at	Can give
$\tilde{\tau}_1 \tilde{\tau}_1$	212	250	$M_{\tilde{ au}_1}, \tilde{ au}_1$ nature
$ ilde{\mu}_{ m R} ilde{\mu}_{ m R}$	252	250+	+ $M_{\tilde{\mu}_{\mathrm{R}}}, M_{\tilde{\chi}_{1}^{0}}, \tilde{\mu}_{\mathrm{R}}$ nature,
			au polarisation
$\tilde{e}_R\tilde{e}_R$	252	250+	+ $M_{\tilde{e}_R}, M_{\tilde{\chi}_1^0}, \tilde{e}_R$ nature
${ ilde \chi}^{0}_{1} { ilde \chi}^{0^{st})}_{2}$	302	350	+ $M_{\tilde{\chi}_2^0}, M_{\tilde{\chi}_1^0}$, nature of $\tilde{\chi}_1^0, \tilde{\chi}_2^0$
$\tilde{\tau}_1 \tilde{\tau}_2{}^{*)}$	325	350	+ $M_{\tilde{\tau}_2} \theta_{mix} \tilde{\tau}$
$\tilde{e}_{R}\tilde{e}_{L}^{*)}$	339	350	+ $M_{\tilde{e}_{\rm L}}$, $\tilde{\chi}_1^0$ mixing, $\tilde{e}_{\rm L}$ nature
$\tilde{\nu}_{\tilde{\tau}}\tilde{\nu}_{\tilde{\tau}}$	392	500	8 % visible BR ($\rightarrow \tilde{\tau}_1 W$)
$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm *)}$	412	500	+ $M_{\tilde{\chi}_1^{\pm}}$, nature of $\tilde{\chi}_1^{\pm}$
${\tilde e}_L {\tilde e}_L{^*)}$	416	500	+ $M_{\tilde{e}_L}, M_{\tilde{\chi}_1^0}, \tilde{e}_L$ nature
${ ilde \mu_{ m L}}{ ilde \mu_{ m L}}^{*)}$	416	500	+ $M_{\tilde{\mu}_{\mathrm{R}}}, M_{\tilde{\chi}_{1}^{0}}, \tilde{\mu}_{\mathrm{R}}$ nature
$\tilde{ au}_2 \tilde{ au}_2^{*)}$	438	500	+ $M_{\tilde{\tau}_2}, M_{\tilde{\chi}_1^0}, \tilde{\tau}_2$ nature, $\theta_{mix \ \tilde{\tau}}$
$ ilde{\chi}_1^0 ilde{\chi}_3^{0^{*)}}$	503	500+	+ $M_{\tilde{\chi}_2^0}, M_{\tilde{\chi}_1^0}$, nature of $\tilde{\chi}_1^0, \tilde{\chi}_3^0$

*): Cascade decays. + invisible $\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$, $\tilde{\nu}_{\tilde{e},\tilde{\mu}}\tilde{\nu}_{\tilde{e},\tilde{\mu}}$.

Mikael Berggren (DESY)

Features of SPS1a'/STC4

- In SPS1a' and the STC points, the τ₁ is the NLSP.
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.6 \text{ GeV}$, $E_{\tau,max} = 42.5 \text{ GeV}$: $\gamma\gamma - background \Leftrightarrow pairs - background$.
- For $\tilde{\tau}_2$: : $E_{\tau,min} = 35.0 \text{ GeV}, E_{\tau,max} = 152.2 \text{ GeV}$: $WW \rightarrow l\nu l\nu - background \Leftrightarrow Polarisation.$
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.
- For pol=(-1,1): $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb} !$
- For ẽ_Ror μ̃_R: :E_{l,min} = 6.6 GeV, E_{l,max} = 91.4 GeV: Neither γγ nor WW → lνlν background severe.

くロン 不通 とくほ とくほ とうほう

Features of SPS1a'/STC4

- In SPS1a' and the STC points, the τ₁ is the NLSP.
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.6 \text{ GeV}, E_{\tau,max} = 42.5 \text{ GeV}$: $\gamma\gamma - background \Leftrightarrow pairs - background$.
- For $\tilde{\tau}_2$: : $E_{\tau,min} = 35.0 \text{ GeV}, E_{\tau,max} = 152.2 \text{ GeV}$: $WW \rightarrow l\nu l\nu - background \Leftrightarrow Polarisation.$
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.
- For pol=(-1,1): $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb} !$
- For ẽ_Ror μ̃_R: :E_{I,min} = 6.6 GeV, E_{I,max} = 91.4 GeV: Neither γγ nor WW → IνIν background severe.

Features of SPS1a'/STC4

- In SPS1a' and the STC points, the τ₁ is the NLSP.
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.6 \text{ GeV}$, $E_{\tau,max} = 42.5 \text{ GeV}$: $\gamma\gamma - background \Leftrightarrow pairs - background$.
- For $\tilde{\tau}_2$: : $E_{\tau,min} = 35.0 \text{ GeV}, E_{\tau,max} = 152.2 \text{ GeV}$: $WW \rightarrow l\nu l\nu - background \Leftrightarrow Polarisation.$
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.
- For pol=(-1,1): $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb} !$
- For ẽ_Ror μ̃_R: :*E*_{*l*,min} = 6.6 GeV, *E*_{*l*,max} = 91.4 GeV: Neither γγ nor WW → *lνlν* background severe.

STC4 global

After a few very general cuts:

- Missing energy > 100
- Less than 10 charged tracks
- | cos θ_{Ptot}| <
 0.95
- Exactly two *τ*-jets
- Visible mass < 300 GeV
- θ_{acop} between
 0.15 and 3.1:

3

A (10) A (10)

Events

STC4 global

After a few very general cuts:

- Missing energy > 100
- Less than 10 charged tracks
- | cos θ_{Ptot}| <
 0.95
- Exactly two *τ*-jets
- Visible mass < 300 GeV
- θ_{acop} between
 0.15 and 3.1:

Mikael Berggren (DESY)

LCWS, Nov 2013 19 / 29

Extracting the $\tilde{\tau}$ properties

See Phys.Rev.D82:055016,2010

Use polarisation (0.8,-0.22) to reduce bosino background.

From decay kinematics:

- $M_{\tilde{\tau}}$ from $M_{\tilde{\chi}_{\tau}^0}$ and end-point of spectrum = $E_{\tau,max}$.
- Other end-point hidden in γγ background:Must get M_{χ̃1} from other sources. (μ̃, ẽ, ...)

From cross-section:

•
$$\sigma_{\tilde{\tau}} = A(\theta_{\tilde{\tau}}, \mathcal{P}_{beam}) \times \beta^3/s$$
, so
• $M_{\tilde{\tau}} = E_{beam} \sqrt{1 - (\sigma s/A)^{2/3}}$: no $M_{\tilde{\chi}_1^0}$!

From decay spectra:

• \mathcal{P}_{τ} from exclusive decay-mode(s): handle on mixing angles $\theta_{\widetilde{\tau}}$ and $\theta_{\widetilde{\chi}_{1}^{0}}$

Topology selection

Take over SPS1a' $\tilde{\tau}$ analysis principle

 $\tilde{\ell}$ properties:

- Only two particles (possibly *τ*:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- + anti $\gamma\gamma$ cuts.

Select this by:

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{jet} < 2.5 \, {\rm GeV}/c^2$,
- *E_{vis}* significantly less than E_{CMS}.
- *M_{miss}* significantly less than *M_{CMS}*.
- No particle with momentum close to E_{beam}.

Topology selection

Take over SPS1a' $\tilde{\tau}$ analysis principle

 $\tilde{\ell}$ properties:

- Only two particles (possibly *τ*:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- + anti $\gamma\gamma$ cuts.

Select this by:

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- *E_{vis}* significantly less than E_{CMS}.
- *M_{miss}* significantly less than *M_{CMS}*.
- No particle with momentum close to E_{beam}.

Topology selection

Take over SPS1a' $\tilde{\tau}$ analysis principle

 $\tilde{\ell}$ properties:

- Only two particles (possibly *τ*:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- + anti $\gamma\gamma$ cuts.

Select this by:

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- *E_{vis}* significantly less than E_{CMS}.
- *M_{miss}* significantly less than *M_{CMS}*.
- No particle with momentum close to E_{beam}.

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2})

Efficiency 15 (22) %

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2})

Efficiency 15 (22) %

< A >

э

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2})

Efficiency 15 (22) %

A (10) F (10)

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2})

Efficiency 15 (22) %

< ロ > < 同 > < 回 > < 回 >

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2})

Efficiency 15 (22) %

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

- Other side jet not e or μ
- Most energetic jet not ${\it e}$ or μ
- Cut on Signal-SM LR of $f(q_{jet1} \cos \theta_{jet1}, q_{jet2} \cos \theta_{jet2})$

Efficiency 15 (22) %

• $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cos θ_{jet1}, q_{jet2} cos θ_{jet2})

Efficiency 15 (22) %

< ロ > < 同 > < 回 > < 回 >

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Important SUSY
 background,but region
 above 45 GeV is signal free.
 Fit exponential and
 extrapolate.
 - *τ˜*₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Only the upper end-point is relevant.
- Background subtraction:
 - *˜*₁: Important SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - ⁷₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

< 6 b

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Important SUSY
 background,but region
 above 45 GeV is signal free.
 Fit exponential and
 extrapolate.
- Fit line to (data-background fit).

∃ ► < ∃ ►</p>

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Important SUSY
 background,but region
 above 45 GeV is signal free.
 Fit exponential and
 extrapolate.
 - [˜]₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

- Only the upper end-point is relevant.
- Background subtraction:
 - $\tilde{\tau}_1$: Important SUSY

Results for $\tilde{\tau}_1$

 $M_{\tilde{\tau}_1} = 107.73^{+0.03}_{-0.05} \text{GeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}^0_1})$ The error from $M_{\tilde{\chi}^0_1}$ largely dominates

8 GeV

200

Results for $\tilde{\tau}_2$

· 2 •

 $M_{\tilde{\tau}_2} = 183^{+11}_{-5} \text{GeV}/c^2 \oplus 18\Delta(M_{\tilde{\chi}^0_1})$ The error from the endpoint largely dominates

 Fit lime to (data-background fit).

0 17 T-I

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Only the upper end-point is relevant.
- Background subtraction:
 - $\tilde{\tau}_1$: Important SUSY

Results from cross-section for $\tilde{\tau}_1$

$$\Delta(\textit{N}_{\textit{signal}})/\textit{N}_{\textit{signal}} = 3.1\%
ightarrow \Delta(\textit{M}_{\widetilde{ au}_1}) = 3.2 {
m GeV}/\textit{c}^2$$

Results from cross-section for $\tilde{\tau}_2$

$$\Delta(N_{signal})/N_{signal} = 4.2\%
ightarrow \Delta(M_{ ilde{ au}_2}) = 3.6 \text{GeV}/c^2$$

End-point + Cross-section $ightarrow \Delta(M_{ ilde{ au}_1}) = 1.7 \text{GeV}/c^2$

• Fit line to (data-background fit).

Mikael Berggren (DESY)

> 800 8 Ge√ 8 0

3

Phy.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$ilde{ au}$ channels

Fitting the $\tilde{\tau}$ mass

- Only the upper end-point is relevant.
- Background subtraction:
 - $\tilde{\tau}_1$: Important SUSY
- Also: τ polarisation in $\tilde{\tau}_1$ decays

 $\Delta(\mathcal{P}_{\tau})/\mathcal{P}_{\tau}$ = 9 %.

ελιιαμυιαιε.

 [˜]₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.

LCWS, Nov 2013 23 / 29

A B F A B F

E_{iet} [GeV]

Channels with μ :s

$\tilde{\mu}$ channels

Use "normal" polarisation (-0.8,0.22).

- $\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L} \rightarrow \mu\mu\tilde{\chi}_1^0\tilde{\chi}_1^0$
- $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \mu \tilde{\mu}_R \tilde{\chi}_1^0 \rightarrow \mu \mu \tilde{\chi}_1^0 \tilde{\chi}_1^0$

• Momentum of *µ*:s

Μ_{µµ}

Channels with μ :s

$\tilde{\mu}$ channels

Use "normal" polarisation (-0.8,0.22).

- $\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L} \rightarrow \mu\mu\tilde{\chi}_1^0\tilde{\chi}_1^0$
- $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \mu \tilde{\mu}_R \tilde{\chi}_1^0 \rightarrow \mu \mu \tilde{\chi}_1^0 \tilde{\chi}_1^0$
- Momentum of µ:s

Channels with μ :s

$\tilde{\mu}$ channels

Use "normal" polarisation (-0.8,0.22).

- $\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L} \rightarrow \mu\mu\tilde{\chi}_1^0\tilde{\chi}_1^0$
- $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \mu \tilde{\mu}_R \tilde{\chi}_1^0 \rightarrow \mu \mu \tilde{\chi}_1^0 \tilde{\chi}_1^0$
- Momentum of *µ*:s
- E_{miss}

• $M_{\mu\mu}$

$\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L}$

Selections

- $\theta_{missingp} \in [0.1\pi; 0.9\pi]$
- $E_{miss} \in [200, 430]$ GeV
- $M_{\mu\mu} \notin [80.100] \text{GeV} \text{ and } > 30$ GeV/c^2
- Masses from edges. Beam-energy spread dominates error.

$$\Delta(M_{ ilde{\chi}_1^0}) = 920 \mathrm{MeV}/c^2$$

 $\Delta(M_{ ilde{\mu}_\mathrm{L}}) = 100 \mathrm{MeV}/c^2$

$\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L}$

Selections

- $\theta_{missingp} \in [0.1\pi; 0.9\pi]$
- $E_{miss} \in [200, 430]$ GeV
- $M_{\mu\mu} \notin [80.100] \text{GeV} \text{ and } > 30$ GeV/c^2
- Masses from edges. Beam-energy spread dominates error.

$$\Delta(M_{\tilde{\chi}_1^0}) = 920 \mathrm{MeV}/c^2$$

 $\Delta(M_{\tilde{\mu}_\mathrm{L}}) = 100 \mathrm{MeV}/c^2$

・ロト ・聞 ト ・ ヨト ・ ヨト

Selections

- $\theta_{missingp} \in [0.2\pi; 0.8\pi]$
- $p_{Tmiss} > 40 {
 m GeV}/c$
- β of μ system > 0.6.
- $E_{miss} \in [355, 395]$ GeV

Masses from edges. Beam-energy spread dominates error.

Selections

- $\theta_{missingp} \in [0.2\pi; 0.8\pi]$
- $p_{Tmiss} > 40 {
 m GeV}/c$
- β of μ system > 0.6.
- $E_{miss} \in [355, 395]$ GeV
- Masses from edges. Beam-energy spread dominates error.

$$\Delta(M_{{\widetilde \chi}^0_2})=1.38 {
m GeV}/c^2$$

$\tilde{\mu}_{\mathbf{R}}$ threshold scan

From these spectra, we can estimate $M_{\tilde{e}_R}$, $M_{\tilde{\mu}_R}$ and $M_{\tilde{\chi}_1^0}$ to < 1 GeV.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\tilde{\mu}_{\rm R}$ threshold scan

From these spectra, we can estimate $M_{\tilde{e}_R}$, $M_{\tilde{\mu}_R}$ and $M_{\tilde{\chi}_1^0}$ to < 1 GeV.

So: Next step is $M_{\tilde{\mu}_R}$ from threshold:

• 10 points, 10 fb $^{-1}$ /point.

• Luminousity $\propto E_{CMS}$, so this is $\Leftrightarrow 170 \text{ fb}^{-1} @ E_{CMS} = 500 \text{ GeV}.$

Error on $M_{\tilde{\mu}_{\mathrm{R}}}$ = 197 MeV

$\tilde{\mu}_{\rm R}$ threshold scan

From these spectra, we can estimate $M_{\tilde{e}_R}$, $M_{\tilde{\mu}_R}$ and $M_{\tilde{\chi}_1^0}$ to < 1 GeV.

So: Next step is $M_{\tilde{\mu}_R}$ from threshold:

- 10 points, 10 fb⁻¹/point.
- Luminousity $\propto E_{CMS}$, so this is \Leftrightarrow 170 fb⁻¹ @ E_{CMS} =500 GeV.

Error on $M_{\widetilde{\mu}_{
m R}}$ = 197 MeV

A D b 4 A b

3 > 4 3

$\tilde{\mu}_{\rm R}$ threshold scan

From these spectra, we can σ(e⁺e⁻→μ̃_Rμ̃_R) [fb] estimate $M_{\tilde{e}_{R}}$, $M_{\tilde{\mu}_{R}}$ and $M_{\tilde{\chi}_{1}^{0}}$ to < data 10 fb⁻¹ / point 1 GeV. fit to data : $\delta M_{\tilde{i}} = 197 \text{ MeV}$ M. = 135.28 GeV So: Next step is $M_{\tilde{\mu}_{P}}$ from 6 $M_{\tilde{u}} = 135.4 \pm 0.2 \text{ GeV}$ threshold: 5 • 10 points, 10 fb $^{-1}$ /point. • Luminousity $\propto E_{CMS}$, so this is 3 \Leftrightarrow 170 fb⁻¹ @ *E*_{CMS}=500 GeV. 2 Error on $M_{\tilde{\mu}_{R}} = 197 \text{ MeV}$ 0 272 274 276 278 280 282 √s [GeV]

Outlook (STC4)

- Study edge detection in spectra with methods borrowed from image processing.
- Currently being developed for e
 _R (S. Caiazza thesis). Also adopted to "Point 5" (model with on-shell IVB bosino decays).
- Make a coherent SGV study of all channels, at all *E_{CMS}* stages.
 - Also channels not studied in SPS1a'
 - Exploit more complex decay cascades.
- All signals generated.
- Background exists, need to replicate 250 & 350 from KEK to DESY.
- Expect results with in a few months.

Outlook (STC4)

- Study edge detection in spectra with methods borrowed from image processing.
- Currently being developed for e
 _R (S. Caiazza thesis). Also adopted to "Point 5" (model with on-shell IVB bosino decays).
- Make a coherent SGV study of all channels, at all *E_{CMS}* stages.
 - Also channels not studied in SPS1a'
 - Exploit more complex decay cascades.
- All signals generated.
- Background exists, need to replicate 250 & 350 from KEK to DESY.
- Expect results with in a few months.

Outlook (STC4)

- Study edge detection in spectra with methods borrowed from image processing.
- Currently being developed for e
 _R (S. Caiazza thesis). Also adopted to "Point 5" (model with on-shell IVB bosino decays).
- Make a coherent SGV study of all channels, at all *E_{CMS}* stages.
 - Also channels not studied in SPS1a'
 - Exploit more complex decay cascades.
- All signals generated.
- Background exists, need to replicate 250 & 350 from KEK to DESY.
- Expect results with in a few months.

If indeed SUSY is kinematically accessible, the ILC is the ideal place to study it.

- Lepton-collider: Initial state is known.
- Production is EW \Rightarrow
 - Small theoretical uncertainties.
 - No "underpaying event".
 - Low cross-sections also for background.
 - Trigger-less operation, so that even very soft stuff will be on tape.
- Many observables accessible: Spectra, angular distributions, total and differential cross-sections, branching ratios, ...
- Often measurable to per mil level.
- I've shown as an example what can be measured in the STC4 bench-mark. Please check out other cases presented this week:
 - Talks by Sert, Krücker, Kato, Mori, in the BSM sessions.

イロト イポト イヨト イヨト 三日

If indeed SUSY is kinematically accessible, the ILC is the ideal place to study it.

- Lepton-collider: Initial state is known.
- Production is EW ⇒
 - Small theoretical uncertainties.
 - No "underpaying event".
 - Low cross-sections also for background.
 - Trigger-less operation, so that even very soft stuff will be on tape.
- Many observables accessible: Spectra, angular distributions, total and differential cross-sections, branching ratios, ...
- Often measurable to per mil level.
- I've shown as an example what can be measured in the STC4 bench-mark. Please check out other cases presented this week:
 - Talks by Sert, Krücker, Kato, Mori, in the BSM sessions.

If indeed SUSY is kinematically accessible, the ILC is the ideal place to study it.

- Lepton-collider: Initial state is known.
- Production is EW \Rightarrow
 - Small theoretical uncertainties.
 - No "underpaying event".
 - Low cross-sections also for background.
 - Trigger-less operation, so that even very soft stuff will be on tape.
- Many observables accessible: Spectra, angular distributions, total and differential cross-sections, branching ratios, ...
- Often measurable to per mil level.
- I've shown as an example what can be measured in the STC4 bench-mark. Please check out other cases presented this week:
 - Talks by Sert, Krücker, Kato, Mori, in the BSM sessions.

If indeed SUSY is kinematically accessible, the ILC is the ideal place to study it.

- Lepton-collider: Initial state is known.
- Production is EW \Rightarrow
 - Small theoretical uncertainties.
 - No "underpaying event".
 - Low cross-sections also for background.
 - Trigger-less operation, so that even very soft stuff will be on tape.
- Many observables accessible: Spectra, angular distributions, total and differential cross-sections, branching ratios, ...
- Often measurable to per mil level.
- I've shown as an example what can be measured in the STC4 bench-mark. Please check out other cases presented this week:
 - Talks by Sert, Krücker, Kato, Mori, in the BSM sessions.

If indeed SUSY is kinematically accessible, the ILC is the ideal place to study it.

- Lepton-collider: Initial state is known.
- Production is EW \Rightarrow
 - Small theoretical uncertainties.
 - No "underpaying event".
 - Low cross-sections also for background.
 - Trigger-less operation, so that even very soft stuff will be on tape.
- Many observables accessible: Spectra, angular distributions, total and differential cross-sections, branching ratios, ...
- Often measurable to per mil level.
- I've shown as an example what can be measured in the STC4 bench-mark. Please check out other cases presented this week:
 - Talks by Sert, Krücker, Kato, Mori, in the BSM sessions.