Simulations of the Undulator Based e⁺ Source at 120 GeV

A. Ushakov¹, G. Moortgat-Pick^{1,2}, S. Riemann², F. Staufenbiel²

¹University of Hamburg, ²DESY

International Workshop on Future Linear Colliders (LCWS13)

12 November 2013

University of Tokyo, Japan

A. Ushakov (University of Hamburg)

e⁺ Source at 120 GeV

Depence on e⁻ Energy and 10 Hz Mode

Dependence on e⁻ Energy 147 m RDR Undulator

- e⁻ linac operates at 10 Hz
- ✓ 1st e⁻ pulse (at 150 GeV) makes positrons
- ✓ 2nd e⁻ pulse (at *E_{cm}*/2) makes luminosity
- \Rightarrow Collision rate is 5 Hz

Motivation: Increase e^+ yield to 1.5 e^+/e^- at low e^- energies (120÷125 GeV)

- Increase length of undulator to \approx 250 m
- Use 231 m undulator
 (TDR: 231 m is reserved for polarization upgrade)
 - Optimize e⁺ capture (FC, capture RF etc.)*

*A. Ushakov et al., LC-REP-2013-019 http://flcweb01.desy.de/lcnotes/notes/LC-REP-2013-019.pdf

e⁺ Source Scheme

e⁺ Source Scheme

• DR acceptance was emulated as series of cuts at ~125 MeV:

- Tranverse emittance: $\epsilon_{nx} + \epsilon_{ny} \leq 70 \text{ mm rad}$
- Max. energy spread: ±37.5 MeV
- Longitudinal bunch size: < 34 mm

e⁺ Yield vs e⁻ Energy for 231 m Undulator

Can yield be improved to 1.5 e^+/e^- at 120 GeV?

Yield vs E-Field Phase of Capture RF

 $E_z = E_0 \cos(kz + \omega t + \varphi_0)$

Bunch Length for Different E-Phases

e⁺ Polarization = 33.0%

 e^+ Polarization = 29.6%

Maximal B-field of FC

FC with max. field of 3.2 T is a good choice for source at 120 GeV

Aperture Size of FC

FC field on axis:

$$B(z) = \frac{B_0}{1 + g \cdot z}$$
$$B(z_{\text{end}}) = 0.5 \text{ T}$$

<i>g</i> [m ^{−1}]	L _{FC} [mm]
30	180
45	120
60	90
75	72

Yield vs Taper Parameter of FC

Max. e⁺ polarization of source at 120 GeV (without collimator):

 \simeq 31%

e⁺ Polarization of Source with Photon Collimator

Max. e^+ polarization of source at 120 GeV (with photon collimator):

$$\simeq$$
 40% for $R_{\rm col} =$ 3.5 mm

Source Parameters

- 120 GeV e⁻ beam
- *K* = 0.92
- 192.5 m undulator active length
- 266.5 m undulator lattice length
- 412 m between undulator and target

Photons on Target

• $E_{1 \, ph} = 6.4 \, MeV$

- $\langle E_{ph} \rangle = 6.8 \text{ MeV}$
- $\langle P_{ph} \rangle = 54.1 \text{ kW}$

*More details are in A.Ushakov et al., ECFA LC 2013 talk

Energy Deposited in Target:

 $\langle E_{dep}
angle = 9.2\%$ (5 kW)

- rotated target with 100 m/s tangential speed
- 554 ns bunch spacing

 $\text{PEDD}\simeq 44 \text{ J/g}$

 $\Delta T \simeq 84$ K per pulse

Thermal Stress in Target (ANSYS)

Max. Equivalent Stress: \simeq 140 MPa (27.5% of Fatigue Strength) Ti6Al4, Fatigue Strength (Unnotched 10M Cycles): 510 MPa

A. Ushakov (University of Hamburg)

e⁺ Source at 120 GeV

- Baseline positron source operated at $E_{e^-} = 120$ GeV and 231 m active undulator length can provide 1.5 e⁺/e⁻
- Polarization of positrons is 31% for source without photon collimator and undulator K = 0.84
- 40% polarization can be achieved with photon collimator having 3.5 mm aperture radius
- At 120 GeV the maximal thermal stress in target induced by pulse is \approx 27.5% of fatigue strength

• Heat load and thermal stress in FC has to be checked

Backup Slides

Positron Production

120 GeV e⁻, 231 m undulator with K = 0.92, 412 m space to target

 $\epsilon_{nx} = 24.5 \text{ mm rad}$ $\epsilon_{ny} = 20.4 \text{ mm rad}$

e⁺ Source at 120 GeV

Captured Yield vs Target Thickness

Yield at 125 MeV and DR "Cuts"*

Deposited Energy in Target

 $\sigma_x \simeq$ 2.5 mm; Bunch Shift = 55.4 μ m

Bunch Overlapping Factor = 114

Simplified ANSYS Model

- "Instantaneous" spacial distribution of *E_{MeV/ph}(x, y, z)* max *E_{MeV/ph}* = 1.2 MeV/(ph·cm³)
- Bunch Overlaping Factor (BOF): 114 bunches/train

•
$$N_{ph/"train"} = N_{e^-/bunch} \cdot Y_{ph/(e^-m)} \cdot L_u \cdot BOF = 8.5 \cdot 10^{14}$$

• PEDD = max $E_{MeV/ph} \cdot N_{ph/"train"} \simeq 44 \text{ J/g}$
 $\Delta T_{max} \simeq 84 \text{ K}$

•
$$\Delta t_{"train"} =$$
 554 ns * BOF = 63.2 μ s

• Heat Rate $\dot{Q}(x, y, z) = E_{MeV/ph}(x, y, z) \cdot N_{ph/"train"} / \Delta t_{"train"} \dot{Q}_{max} = 3.1 \cdot 10^{12} \text{ W/m}^3$

ANSYS Heat Source: $\dot{Q}(x, y, z)$, for $t \le \Delta t_{"train"}$ 0, for $t > \Delta t_{"train"}$

Task: to find max. stress shortly after the end of bunch train

Temperature after Bunch Train

Maximal Equivalent Stress

