Common Generator Tools for LC

Topics

- Common generator tools for DBD
- Issues in post DBD era

Akiya Miyamoto KEK

LCWS13 @ Tokyo

Introduction

- Role of common generator tools
 - Provide common generator programs and samples to ILD and SiD & ILC and CLIC
 - Allow performance evaluation with same footings
 - Minimize duplication of efforts for tool developments and sample productions

History

- Working group formed after ILC LOI.
- Common tools have been used for ILC DBD & CLIC CDR and so on
- Generator group consists of
 - Tim Barklow, Mikael Bergren, Philip Roloff, AM.

DBD era : Whizard 1.95 generator

- Tree calculation of $2 \rightarrow n$ processes with multiple ISR γ 's. Hadronization and decay of final *n* particles by Pythia. Tauola for τ .
- All $(e^+e^-, e^+\gamma, \gamma e^-, \gamma \gamma) \rightarrow n$ processes $(n=2\sim6 \text{ particles})$ and $e^+e^- \rightarrow f\bar{f}h$ e^{\pm} : Luminosity spectrum by GuineaPig
 - γ : nearly real Weizsacker-Williams photons (Whizard) or beamstrahlung photons(GuineaPig).
- ISR: Whizard default (order 3 LLA., include Pt of remnants)
- FSR by Pythia : QED for μ and τ , QCD&QED for quarks. No QED FSR of e (:: Can not give correct q^2 to Pythia.)
- Higgs : ffh process m_H=125GeV. (neglect fffh) h decays by Pythia with BRs given by a LHC WG. Other processes m_H=2TeV
- Amplitude with a gluon propagator in Whizard : OFF.
 - ➔ Pythia simulate gluon splitting.
 - → No interferences between QCD and EW amplitude. \leq 10% effect

DBD era : Physsim generator for $t\overline{t}h$

- It was hard to generate processes with 8 fermions or more by Whizard, because too many CPU time and memory requirements due to many channels involved.
- Physsim calculates only a limited number of diagrams. Saves CPU time.

Figure 2.2.1: Feynman diagrams for the $e^+e^- \rightarrow t\bar{t}h$ process.

- Used for generating $e^+e^- \to t\overline{t}h$, $t\overline{t}Z(Z \to f\overline{f})$, $t\overline{t}g^*(g^* \to b\overline{b})$
- $\blacksquare Z \to q\overline{q} \text{ and } g^* \to b\overline{b} \text{ in } t\overline{t}Z \text{ and } t\overline{t}g^* \text{ hadronize independently w. } t\overline{t}$
- e⁺(e⁻) luminosity spectrum, ISR, hadronization/decay : same as Whizard samples.
- Full 8-fermion generator is desirable.

DBD Processes

event-type	process
1f	$e^{\pm}\gamma ightarrow \gamma e$
2f	$e^+e^- ightarrow far{f}$
3f	$e^{\pm}\gamma ightarrow (e ext{ or } u) + 2f$
4f	$e^+e^- ightarrow 4f$
5f	$e^{\pm}\gamma ightarrow (e ext{ or } u) + 4f$
6f	$e^+e^- ightarrow 6f$
aa_2f	$\gamma\gamma ightarrow 2f$
aa_4f	$\gamma\gamma ightarrow 4f$
aa_minijet	$\gamma\gamma ightarrow$ hadron mini-jets
aa₋lowpt	$\gamma\gamma ightarrow { m low}~{ m p_t}$ hadrons
eepairs	beam induced low $\mathrm{p_t}~e^\pm$ pairs
higgs	$e^+e^- ightarrow far{f}h$
tth	$e^+e^- \to t\bar{t}h, t\bar{t}Z, \text{ and } t\bar{t}g^*(g^* \to b\bar{b})$

.

General feature of DBD sample

- 1 TeV and 500 GeV samples with ILC TDR beam parameters
- 1ab⁻¹ except high σ processes,
- e[±] fully polarized
- Mh=2 TeV except "higgs"
- γ = brems. or beam-strahlung γ generated by GunieaPig
- $\gamma\gamma$ _minijet: hadron prod. by point_like γ using Pythia
- File format: **stdhep**, stdhp4 for pol. info.
- Samples were generated at SLAC, DESY & KEK. Common samples are kept on ILC VO GRID (LCG & DIRAC catalog). ~ 500MB each
 - ♦ SiD: pre-mixed, ILD: use as it is.
- Common format for meta info. (process ID, file name, cros section, ...) were defined and kept on Web
- Source files are maintained on SVN

Samples after DBD (for Snowmass)

250 GeV	350 GeV
$e^+e^- ightarrow 2f$, $4f$, $f\bar{f}$ h	$e^+e^- \rightarrow 2f, 4f, 6f, f\bar{f}h$
$e^+\gamma/\gamma e^- \rightarrow 1f, 3f$	$e^+\gamma/\gamma e^- \rightarrow 1f, 3f, 5f$
$\gamma\gamma \rightarrow 2f$, mini-jet, low_pt	$\gamma\gamma \rightarrow 2f$, 4f, mini-jet, low_pt
eepairs	eepairs
	$e^+e^- \rightarrow t\bar{t}$ (w. thresh. effect by Physsim)

- e^{\pm} fully polarized. 1 ab^{-1} except high σ processes
- ffh files were sub-divided depending on the Higgs decay mode
- ~ 1 G events, 6k files (except low_pt hadrons and eepairs)
- Files are on ILC VO GRID (LCG & DIRAC catalog)

$\gamma\gamma \rightarrow$ hadron generators

■ $\gamma\gamma \rightarrow \text{low_pt}$ hadrons : with X-section formula by Peskin. Using Pythia for q/g collisions. There was a problem in getting $\gamma\gamma$ luminosity from e+e- lumi.

Ecm (GeV)	Old#	# used for ILD Production	New# (correct)
250	0.33	0.20	0.25
350	0.54	0.33	0.40
500	1.7	1.7	1.2
1000	4.1	4.1	2.7

of $\gamma\gamma \rightarrow$ low_pt hadron events per bunch crossing

Whizard1 to Whizard2

- Support for Whizard1 by authors will go away at the end of the year
- Whizard2 new feature
 - new simplified user interface
 - matching & merging of photon and gluon shower
 - treatment of 8f might be possible
 - τ polarization
- But, but thorough validation by user is necessary.
- Whizard1: several features (beam spectrum, output info, ...) were implemented by users (LC community) Whizard2: Hope to be implemented in Whizard itself by the authors.

E250-TDR_ws.eL.pR e+e- \rightarrow b B Final state particles

Whizard 1.95 vs Whizard2.1.1 : Comparison by Jan ISR only (No BS) hadronization: pythia w LEP tune vs Whizard2

2013/11/12

Whizard2 issues

ILC beam spectrum must be implemented correctly and validated.

Output format

- stdhep : keep same format as the DBD version; intermediate particles and pol. info
- move to Icio ? middle/long term goal
- tau polarization
- hadronization
- cross-section consistency
- generation of 6f/8f processes
- include t tbar resonance effects
- ➔ Serious validation efforts by user side are essential
- ➔ After LCWS13, we'd like to work together with Whizard authors to address these issues

Conclusion

- Common generator tools and samples are important for
 - consistent studies
 - minimize unnecessary duplicated efforts
- Needs for common generator tools and samples will continue for physics and optimization studies in future
- Several generator issues have been identified during the DBD era. We hope to be able to solve them in coming months.
 - Current main focus : Whizard 1.95 to Whizard 2.x.
 - Other generators (QED generator, for example) would be necessary eventually
- Participation of many users are important for these activities.