Reconstruction method of

Scintillator Strip ECAL

 12th November 2013K. Kotera,

Shinshu University

Contents

1. Structure of Scintillator strip ECAL in ILD,
2. strip Splitting Algorithm (SSA),
3. evaluation of SSA,
position resolution, jet energy resolution,
4. ghost study with $\mu-\mu$ events,
5. ScECAL alternately replaced strip layers with large tile layers, and
6. summary.

Strip ScECAL in ILD

1. Mechanical design of the barrel and the endcaps: ILD_o3_V05

2. alveolar structure itself is made with W absorbers.
3. two scintillator layers in an alveolar make a sandwich structure with a tungsten absorber.
4. strip directions are orthogonal to each other.

Strip Ecal reconstruction with the strip splitting algorithm

How to extract $5 \times 5 \mathrm{~mm}^{2}$ granularity from strip Scintillators
 deposited energy on a strip delivered into virtual square cells

Strip Ecal reconstruction with the strip splitting algorithm

How to extract $5 \times 5 \mathrm{~mm}^{2}$ granularity from strip Scintillators
 deposited energy on a strip delivered into virtual square cells

positions and energies of all virtual cells are fed into the PandoraPFA program

Position reconstraction Gravitational center of energy

Evaluation of SSA

10 GeV photons are injected on the ScECAL of ILD, changing injection position w.r.t. a scintillator of the first layer.

Side view of a scintillator of the first layer and injection point of photons

Colored open histogram: without SSA

Black hatched: reconstructed PF object with SSA, not depend on injection position. Position resolution is $\sim 1 \mathrm{~mm}$

Systematic shift is removed by the SSA

Distance btw. position of reconstructed PFO and MC true in z.

Evaluation of SSA

uds Jet Energy Resolution depending on the strip length

```
e}+\mp@subsup{e}{}{-}->q\overline{q}\quadq=u,d,
    100 GeV Single jet
```


Length of strip (mm)

- No large deterioration with increasing the strip length up to 60 mm after applying SSA. - we study on 45 mm strip as a standard length,
$\cos \left(\theta_{\text {_Thrust }}\right.$ < 0.7 (Barrel)
RMS90: RMS of 90% of center events

Evaluation of SSA

Jet energy resolution

$$
e^{+} e^{-} \rightarrow q \bar{q} \quad q=u, d, s
$$

$45 \times 5 \mathrm{~mm}^{2}$ strip ScECAL w/o SSA
$15 \times 15 \mathrm{~mm}^{2}$ tile ScECAL
$45 \times 5 \mathrm{~mm}^{2}$ strip ScECAL w SSA
$5 \times 5 \mathrm{~mm}^{2}$ tile ScECAL
DBD results (Si-W ECAL)
SSA works well,
leave $\sim 0.2 \%$ difference from $5 \times 5 \mathrm{~mm}^{2}$ tile ScECAL and DBD results

Detail study with $\mu-\mu$ events

To reduce 0.2% difference of jet energy resolution between 45×5 mm^{2} ECAL w/ SSA and $5 \times 5 \mathrm{~mm}^{2}$ ECAL,

Ratio of two Particle Flow Object ($\mu-\mu$) event

$45 \times 5 \mathrm{~mm}^{2}$ ScECAL + SSA: ratio of $\mu-\mu$ events decrease at 20-30 mm $\mu-\mu$ distance,
distance > 40 mm :
recover the ratio, since one μ reaches into the next $45 x 45 \mathrm{~mm}^{2}$ region

What happens on $45 \times 5 \mathrm{~mm}^{2}+$ SSA

The number of PFOs of
$5 \times 5 \mathrm{~mm}^{2}$

The number of PFOs of $45 \times 5 \mathrm{~mm}^{2} \mathrm{w} / \mathrm{SSA}$

additional one PFOs or two PFOs to $\mu-\mu$ events appear with 20 and 30 mm distance of $\mu-\mu$ in the case of $45 \times 5 \mathrm{~mm}^{2} \mathrm{w} /$ SSA.

How to remove ghosts

Alternately replace strip layers with $5 \times 5 \mathrm{~mm}^{2}$

tile layers.

def: Alt5x5

- hybrid with Si-layers (next talk)

Alternately replace strip layers with large tile layers.

def:
Alt10x10, Alt 15x 15
10×10 or $15 \times 15 \mathrm{~mm}^{2}$ is easy to establish as pure scintillator layers

How to do SSA with large tiles

no ghost

1st Step

large tiles are sprit into virtual $5 \times 5 \mathrm{~mm}^{2}$ cells using information from $\mathrm{n} \pm 1$ layer strip cells
virtual hit

2st Step

strip cells are done SSA using virtual $5 \times 5 \mathrm{~mm}^{2}$ cells created in the 1st step

Again ratio of exact $\mu-\mu$ events

Again ratio of exact $\mu-\mu$ events

Alt 5×5 and Alt 10×10 almost completely remove ghost.

π^{0} reconstraction

π^{0} energy: $5,10,20,30,40 \mathrm{GeV}$
Select two photon events

- There is no large difference in spectra of two detectors: $\mathrm{E} \leqq 10 \mathrm{GeV}$
- It is difficult for both detectors to reconstruct $\pi^{0}: E \geqq 40 \mathrm{GeV}$.
- Lets see more detail in quantitative analysis

Quantitative evaluation

Ratio two-photon events

- A little bit degrading of standard deviation of $M \pi^{0}$ with strip SSA with $\mathrm{E} \pi^{0}>20 \mathrm{GeV}$.
- Note that those energy corresponding to 15-30 mm r-r distance consistent with $\mu-\mu$ study.
- Alt. 10×10 improves this situation.

Jet energy resolution of Alt.tile ScECAL with SSA

ScECAL alternately replaced strip layers with $10 \times 10 \mathrm{~mm}^{2}$ layers (Alt. 10x10) has similar energy resolution to $5 \times 5 \mathrm{~mm}^{2}$ tile ScECAL at $E_{j e t} \leqq 100 \mathrm{GeV}$, only 0.1% degrades at high energy.

Summary

1. We are developing a scintillator strip ECAL for future linear colliders.
2. Reconstruction algorithm (SSA) to extract $5 \times 5 \mathrm{~mm}^{2}$ granularity from strip cells is developed.

- positions from strip cells are significantly corrected with SSA (position resolution $\sim 1 \mathrm{~mm}$).
- Up to 60-90 mm strip length, jet energy resolution (JER) is kept by using SSA.
- The jet energy resolution up to 250 GeV jet in $45 \times 5 \mathrm{~mm}^{2}$ strip ECAL with SSA is close to the case with $5 \times 5 \mathrm{~mm}^{2}$ tile ECAL (also DBD result), leaving 0.2\% difference.

3. Ghost clusters are investigated.

- $45 \times 5 \mathrm{~mm}^{2}$ strip ECAL with SSA makes large amount of photon ghost with $20-30 \mathrm{~mm} \mu-\mu$ distance.

4. ScECAL alternately replaced strip layers with large tile layers.

- In Alt.10x10 ECAL the ghosts are almost removed.
- π^{0} reconstruction is also improves with Alt. 10×10 ECAL.
- Alt. 10×10 ECAL has the same JER as $5 \times 5 \mathrm{~mm}^{2}$ tile ECAL at $\mathrm{E}_{\text {jet }} \leqq 100 \mathrm{GeV}$, and 0.1% difference at high energy.

5. Started:"non-uniformity", "saturation SiPM", "Noise from SiPM"

Back up

Contents of additional PFOs

- excess PFOs are ghost misidentified as almost photon or some neutral hadrons

a little more detail

What happens at 45 GeV and high energy jets?

Measured photon energy (1 r event)

$\pi^{+} 10 \mathrm{GeV}+$ photon 20 GeV

$5 \times 5 \mathrm{~mm}^{2} \mathrm{x} 1 \mathrm{~mm}$ Tile

Reconstructed photon energy (GeV)
$45 \times 5 \mathrm{~mm}^{2} \times 1 \mathrm{~mm}$ Strip SSA

Reconstructed photon energy (GeV)

- distance $>30 \mathrm{~mm} \rightarrow$ Both types have good energy resolution.

Measured photon energy (1 r event)

$\pi{ }^{+} 10 \mathrm{GeV}+$ photon 20 GeV

$5 \times 5 \mathrm{~mm}^{2} \mathrm{x} 1 \mathrm{~mm}$ Tile

Reconstructed photon energy (GeV)
$45 \times 5 \mathrm{~mm}^{2} \times 1 \mathrm{~mm}$ Strip SSA

Reconstructed photon energy (GeV)

- distance $>30 \mathrm{~mm} \rightarrow$ Both types have good energy resolution.
- distance $=20 \mathrm{~mm} \rightarrow$ Strip SSA has a bit leading spread.
- distance $<10 \mathrm{~mm}, 5 \mathrm{~mm} \rightarrow$ Both do not have good resolution.

\# of PFO and their energy (45×5 strip SSA / 5×5 tile) - 1

Excess of neutral Hadrons is larger in analysis of low energy (45 GeV) jet.

Opening angle of $r-r$

π^{0} energy: $5,10,20,30,40 \mathrm{GeV}$
Numbers on the peak tops are distances between photons on ECAL.

$5 \times 5 \mathrm{~mm}^{2} \times 1 \mathrm{~mm}$ ScECAL

$45 \times 5 \mathrm{~mm}^{2} \times 1 \mathrm{~mm}$ ScECAL with SSA

$40 \mathrm{GeV} \pi^{0}$ by SSA is affected by ghost phenomenon?

Current version in MarlinReco takes more elegant way by Daniel Jeans

To refer the energy in the nearest neighbor layer, it scans intersection of center lines of respective scintillators toward the IP

Energy in virtual cell (?) = Energy on this strip \times

$$
\frac{(\bullet+\Delta)}{\binom{\Delta+\Delta+\Delta+\Delta}{+\bullet+\bullet+\bullet++}}
$$

Energy on this strip \times

$$
\frac{(O+\Delta)}{\binom{\Delta+\Delta+\Delta+\Delta}{+O+O+\square}}
$$

