Comparison of Tau-pair Performance with ILD ECAL candidates

LCWS13 12 / 11 / 2013 @ Tokyo Tomohisa Ogawa Shinshu-Univ.

Motivation of This Study

- we want to estimate the performance of ECALs with the ILD bench mark process ee -> TT.

- A potential criterion for ILC electromagnetic calorimeters (ECAL) is the ability to reconstruct gammas with a charged track near by.
- Also, the full reconstruction of taus may be yet more challenging and the physics opportunities are potentially crucial. (Taus appear in many New Physics signatures)
- At high energy, daughters of T decay are concentrated in a very narrow angle and a narrow area due to the Lorentz boost.
 - Identifying and measuring gammas (from πos) is difficult, because 2γs are very close.
 - → ILD demands well segmented ECAL.

We compare tau reconstruction performance
 (gamma separation) with some ILD ECAL candidates.

How precisely do ECALs reconstruct tau?

ILD ECAL Candidates

- ECAL is high cost.
 - We want to decrease the price without loosing performance as possible as we can.
- Basically, we examine with three types of ECALs

- Si ECAL

- Pure silicon ECAL.
- Silicon thickness = 0.5 mm
- Silicon cell size = 5x5 mm
- ECAL module thickness = 185.0 mm
 - DoubleLayer Hybrid

- Si, Sci hybrid ECAL
- Silicon thickness = 0.5 mm
- Scintillator thickness = 1.0 mm
- ECAL module thickness = 190.796 mm
- Use Si 2-layer Sc 2-layer alternatively
- Apply SSA (strip split algorithm)
 at reconstruction step. → achieve 5x5 mm

Figure 5.3.2: Summary plot of the relative contribution by the different sub-components to the total cost of the ILD detector.

- Sci ECAL w/ SSA

- Pure scintillator ECAL
- Scintillator thickness = 1.0 mm
- ECAL module thickness = 197.42 mm
- Scintillator size = 45x5 mm
- Apply SSA (strip split algorithm) at reconstruction step. → achieve 5x5 mm
- The cost is about half of pure Si ECAL
- The problem of ghost hit.
 - And we think further configuration...
 - Single layer hybrid.
 - Scintillator strip + Scintillator tile

* Double - Hybrid cannot completely extract tail layer effect

Event sample

- Event sample

e+e- -> tau+tau- $\sqrt{s} = 500$ GeV (ISR-off to simplify event)

```
Beam polarized : e-, e+ = -80%, +30%
```

```
e-, e+ = +80%, -30%
```

- Estimation
 - Reconstructed efficiency and purity at each tau decay.

- Physics observables : Afb, P(T)(tau polarization)

Make tau jet and some Cut

- Make tau jet

 Sort particles in energy order and select two energetic charged particles so as to satisfy back-to-back. → Charged daughter of tau.

2. Gather particles around the charged daughter into the tau jet. and combine energy and momentum of associated particles.

→ Combine < 8 deg from charged track.

- Applied cuts to suppress background.

main background :

e e -> Bhabha e e -> W W -> 2l + 2ν 2-γ -> tau tau

Pre-cut : demand Back-to-Back.

Cut / Signal(%)	Si ECAL	D-Hybrid	Sci w/SSA
No cut	100	100	100
Pre-cut	92.32	91.46	91.58
N of Tracks < 6	89.88	89.06	89.28
172 < Opening angle	87.22	86.42	86.68
-0.9 < Thrust angle < 0.9	87.22	86.42	86.68
70 < visible energy < 450	84.64	82.92	83.16

* cuts applied to the whole event

Angle between gamma and main Track tau -> a1p1 mode on MCtrue

Selection of decay mode

- Applied two methods to distinguish decay modes of tau.

- Loose Cut : based on some cuts
 - 1. Check whether track attached by Pandora is lepton or hadron.
 - 2. Check energy of gammas.

Energy sum of gammas is less than 3.5GeV. $\rightarrow \pi$ mode.

Energy sum of gammas is more than 3.5GeV.

3. Check mass of gammas.

Mass of gammas (PiO) is less than 0.45GeV. $\rightarrow \rho$ mode.

Mass of gammas (PiO) is more than 0.45GeV. \rightarrow a1 mode.

- MVA Cut : based on MVA method

→ Distinguish from MVA response on each ECAL.

Efficiency & purity with Loose Cut

- Efficiency & Purity
 - In reconstruction of leptonic decay, efficiency and purity are almost same.
 - In reconstruction of hadronic decay, efficiency and purity are difference.

(Good) Si ECAL > DoubleLayer Hybrid > Sci w/SSA (Not good)

- Miss Selection
 - Also miss selection is difference.

(Less) Si ECAL 16.54% > DoubleLayer Hybrid 18.97% > Sci w/SSA 20.39% (Not less)

piO Mass at tau->rho

0.2

[GeV]

0.15

0.25

Si ECAL

D-Hybrid

Sci w/SSA

0.3

0.35

exactly 2gammas

0.1

400

350

300

250

200

Efficiency & Purity with Loose Cut (a) $\sqrt{s} = 250, 500 \& 1000 \text{ GeV}$

- Also simulated at some energy points 250, 500, 1000GeV.
- In e decay (leptonic decay), efficiency and purity are almost same.
- In pi decay, compared with Si ECAL, 2ECALs get a little bit worse.
- In rho and a1, with increasing energy they get worse, even Si ECAL.

Further Configurations

- Configurations.
 - SingleLayer Hybrid

- Use Si 1-layer Sc 1-layer alternatively
- Can use precise information of Si layer and prevent ghost hit.
- Can expect almost the same performance of Si ECAL.

- Scinti 45×5 + Scinti 10×10

Polarization and Optimal observable ω

- we can measure a polarization from the angular distribution of decay daughters.
 - → the precise information of decay daughters is important
- The main observable are energies and angles of/between daughters in τ rest-frame.

(- Since the neutrino is not observed, E and θ cannot be reconstructed completely.)

- Polarization calculation varies by decay modes.
- We can estimate by using optimal observable ω .
- Leptonic decay :

- Hadronic decay :

 $\omega_l = \frac{1 + x - 8x^2}{5 + 5x - 4x^2}$

 $\omega_{\pi}=2x-1$

$$\omega_{\rho} = \frac{\left(-2 + \frac{m_{\tau}^2}{Q^2} + 2\left(1 + \frac{m_{\tau}^2}{Q^2}\right)\frac{3\cos\psi - 1}{2}\frac{3\cos^2\beta - 1}{2}\right)\cos\theta + 3\sqrt{\frac{m_{\tau}^2}{Q^2}}\frac{3\cos^2\beta - 1}{2}\sin 2\psi\sin\theta}{2 + \frac{m_{\tau}^2}{Q^2} - 2\left(1 - \frac{m_{\tau}^2}{Q^2}\right)\frac{3\cos\psi - 1}{2}\frac{3\cos^2\beta - 1}{2}}{\cos\psi}}$$
$$\cos\psi = \frac{x(m_{\tau}^2 + Q^2) - 2Q^2}{(m^2 - Q^2)\sqrt{x^2 - 4Q^2/s}}$$

- So far, i do not consider a1 mode.

Polarization with 3Detectors

Polarization combined ω with 3Detectors

- Formula of ω differs by decay modes,

but ω can be summed up through all decay modes.

→ Ratio to non-polarized sample.

- estimated tau polarization and compared with 3ECALs.
- do not include error and need to analysis more precisely.

Summary & Outlook

- I simulated tau-pair events with some ILD ECAL candidates to test ECAL performance.
- Decay mode identified with Cut base.
 - For leptonic decay, performance is almost same between 3ECALs.
 - For hadronic decay mainly rho and a1 mode, performance is different between 3ECALs. rho mode : Efficiency of D-Hybrid and Sc w/SSA decrease 5% by 5% from one of Si ECAL. a1 mode : Efficiency of D-Hybrid and Sc w/SSA is almost same with one of Si ECAL.

but purity decrease 10% by 10% from one of Si ECAL.

- With increasing √s the gammas are closer and it is more difficult for even Si ECAL to reconstruct them.
- Simulation with further configuration is under progress.

Efficiency and purity of S-Hybrid is improved.

we can expect S-Hybrid will be almost the same performance of Si ECAL

- And also, we compared tau polarization and the difference appears.
 - → Including systematic error and need to analysis more precisely.

Backup

Comparison of Performance on Tau with ILD ECAL candidates

- we want to estimate the performance of ECALs with the ILD bench mark process ee -> TT.

- Identifying and measuring gammas (from π os) in jets is already an important/crucial requirement.
- Also, the full reconstruction of taus may be yet more challenging and the physics opportunities are potentially crucial. (Taus appear in many New Physics signatures)
- At high energy, daughters of τ decay are concentrated in a very narrow angle and a narrow area due to the Lorentz boost.
 - \rightarrow it is difficult to separate particles with PFA (). \rightarrow ILD demands well segmented ECAL.

Forward-Backward Asymmetry

- Angular distribution of tau- (-0.99 < $\cos\theta$ < 0.99)

→ Afb does not depend on ECal geometries.
But need to consider BG properly.

	e-L, e+R	e-R, e+L
Si Ecal	45.4±0.4%	40.1±0.4%
Hybrid	45.3±0.4%	40.0±0.4%
Sc SSA	45.1±0.4%	40.4±0.2%

16

Miss Selection with Loose Cut

- Comparison of Detectors in each decay

- Si ECAL

- DoubleLayer Hybrid

decay mode

Reconstructed mode

Reconstructed mode

- Sci ECAL w/SSA

(%) a1 ρ Π decay mode 2.53 3.98 1.27 е 1.03 1.67 2.51 μ 5.65 92.30 2.89 Π 38.61 80.11 3.74 ρ 3.49 40.57 a1 0.30 1.36 6.55 11.47 X

(%)	Π	ρ	a1
е	1.25	3.05	4.21
μ	0.98	1.55	2.30
Π	90.56	6.04	3.18
ρ	5.41	75.67	35.25
a1	0.44	6.98	42.94
×	1.36	6.71	12.12

Reconstructed mode

	(%)	Π	ρ	a1
	e	1.53	3.45	4.90
	μ	1.11	1.65	2.35
•	Π	89.19	8.52	4.06
	ρ	6.03	69.90	36.35
	a1	0.76	9.68	39.57
	×	1.38	6.80	12.77

1-Prong Mass Dist

1-Prong Mass Dist

1-Prong Mass Dist

decay mode

PiO at Rho mode with Loose Cut

- Comparison of Detectors.

10³

- Exactly 2-gammas.

18

MVA input Variables

- Training sample

Training on each mode

 $\sqrt{500}$ GeV e-Le+R -> tau-tau+

tau -> only e decay (mu, pi, rho, a1p1)

- MVA input ovariables.

1. #of gamma clusters.

6. Track energy. 2. Sum of gamma energy. 7. ECAL E / Total E.

3. Mass of gamma clusters. 8. Hit E / Track E.

4. #of calorimeter Hits.

5. Sum of neutron energy.

I-Prina Event Ň 10 10 10 Mode 41n ModeA1p1 10 10

MVA response (in case of Si ECAL)

- Method is BDT

```
Response : o (false) ~ 1 (true)
```

e mode Response > 0.7 µ mode Response > 0.7

 π mode Response > 0.3

 ρ mode Response > 0.28

a1p1 mode Response > 0.2

Comparison of Cut Method in Si ECAL

- Comparison of Cut Method
 - √500GeV e-Le+R -> tau-tau+
 - Detector

In case of Si ECAL.

- Only 1-prong decay

e, mu, pi, rho, a1p1

- Cut

Loose Cut, MVA Cut.

- MVA Cut

- Miss Selection

In case of Loose Cut, ratio is 16.54%.

In case of MVA Cut, ratio is 13.34%.

96.3

70.29

MVA Cut

Efficiency & purity with MVA Cut

- Efficiency & Purity
 - Improved generally by MVA
 - In reconstruction of leptonic decay, efficiency and purity are almost same.
 - In reconstruction of hadronic decay, efficiency and purity are difference.

(Good) Si ECAL > DoubleLayer Hybrid > Sci w/SSA (Not good)

- Miss Selection
 - Also miss selection is difference.

```
(Less) Si ECAL 13.34% > DoubleLayer Hybrid 15.19% > Sci w/SSA 18.23% (Not less) \neg
```

Miss Selection with MVA Cut

- Comparison of Detectors in each decay

- Si ECAL

- DoubleLayer Hybrid

Reconstructed mode

(%)	Π	ρ	a1
е	1.25	0.95	0.74
μ	4.09	0.14	0.09
Π	84.99	5.53	1.20
ρ	5.98	84.36	37.24
a1	1.41	8.45	60.56
×	2.28	0.57	0.17

Reconstructed mode

Ð	(%)	Π	ρ	a1
	е	1.52	1.01	0.65
ροι	μ	2.11	0.07	0.07
УЛ	Π	81.06	6.96	1.27
eca	ρ	6.95	81.70	42.02
ס	a1	1.72	9.57	55.82
	×	6.11	0.69	0.17

- Sci ECAL w/SSA

Reconstructed mode

(%)	Π	ρ	a1
e	1.71	0.97	0.60
μ	3.12	0.14	0.11
Π	81.28	10.76	2.54
ρ	7.35	73.98	43.71
a1	2.34	13.24	52.96
×	4.2	0.91	0.08

sPiO_MassDist

sPiO_MassDist

decay mode

22

3Detectors (a) tautau with Loose Cut

Si ECAL thicko.5mm

Efficiency, Purity & Acceptance (with **Loose Cut**)

Lepton1Mode Efficiency= 81.21Lepton1Mode Purity= 91.99Lepton1Mode Acceptance= 88.27

Lepton2Mode Efficiency= 86.48Lepton2Mode Purity= 94.56Lepton2Mode Acceptance= 91.46

PionMode Efficiency= 83.24PionMode Purity= 80.49PionMode Acceptance= 103.4

RhoMode Efficiency= 70.04RhoMode Purity= 82.36RhoMode Acceptance= 85.04

A1p1Mode Efficiency= 35.19A1p1Mode Purity= 79.53A1p1Mode Acceptance= 44.25

MissSelectionRatio = 16.54

ADoubleLayer Sci-thick1.omm

Efficiency, Purity & Acceptance (with **Loose Cut**)

Lepton1Mode Efficiency = 80.98 Lepton1Mode Purity = 91.13 Lepton1Mode Acceptance = 88.86

Lepton2Mode Efficiency = 86.05 Lepton2Mode Purity = 95.15 Lepton2Mode Acceptance = 90.44

PionMode Efficiency= 80.02PionMode Purity= 78.47PionMode Acceptance= 101.9

RhoMode Efficiency= 66.30RhoMode Purity= 81.20RhoMode Acceptance= 81.65

A1p1Mode Efficiency= 37.37A1p1Mode Purity= 69.18A1p1Mode Acceptance= 54.01

MissSelectionRatio = 18.97

Sci w/ SSA Sci-thick1.omm

Efficiency, Purity & Acceptance (with Loose Cut)

Lepton1Mode Efficiency = 81.10 Lepton1Mode Purity = 90.31 Lepton1Mode Acceptance = 89.79

Lepton2Mode Efficiency = 86.39 Lepton2Mode Purity = 94.78 Lepton2Mode Acceptance = 91.15

PionMode Efficiency= 79.29PionMode Purity= 77.77PionMode Acceptance= 101.9

RhoMode Efficiency= 63.58RhoMode Purity= 80.25RhoMode Acceptance= 79.22

A1p1Mode Efficiency = 36 A1p1Mode Purity = 59.28 A1p1Mode Acceptance = 60.74

MissSelectionRatio = 20.39

3Detectors @ tautau with MVA Cut

Si ECAL thicko.5mm

Efficiency, Purity & Acceptance (with **MVA Cut**)

Lepton1Mode Efficiency= 93.00Lepton1Mode Purity= 96.49Lepton1Mode Acceptance= 96.38

Lepton2Mode Efficiency= 97.71Lepton2Mode Purity= 96.37Lepton2Mode Acceptance= 101.4

PionMode Efficiency	= 85.03
PionMode Purity	= 83.86
PionMode Acceptance	= 101.4
RhoMode Efficiency	= 85.22
RhoMode Purity	= 82.47
RhoMode Acceptance	= 103.3
A1p1Mode Efficiency	= 59.72
A1p1Mode Purity	= 70.29
A1p1Mode Acceptance	= 84.96
MissSelectionRatio	= 13.34

ADoubleLayer Sci-thick1.omm

Efficiency, Purity & Acceptance (with **MVA Cut**)

Lepton1Mode Efficiency = 92.22 Lepton1Mode Purity = 96.42 Lepton1Mode Acceptance = 95.64

Lepton2Mode Efficiency = 96.76 Lepton2Mode Purity = 97.77 Lepton2Mode Acceptance = 98.97

PionMode Efficiency= 81.53PionMode Purity= 80.59PionMode Acceptance= 101.2

RhoMode Efficiency= 82.96RhoMode Purity= 80.56RhoMode Acceptance= 102.9

A1p1Mode Efficiency= 56.36A1p1Mode Purity= 65.63A1p1Mode Acceptance= 85.88

= 15.19

MissSelectionRatio

Sci w/ SSA Sci-thick1.omm

Efficiency, Purity & Acceptance (with **MVA Cut**)

Lepton1Mode Efficiency = 92.78 Lepton1Mode Purity = 96.73 Lepton1Mode Acceptance = 95.92

Lepton2Mode Efficiency = 96.42 Lepton2Mode Purity = 97.02 Lepton2Mode Acceptance = 99.38

PionMode Efficiency	= 81.24
PionMode Purity	= 74.28
PionMode Acceptance	= 109.38

RhoMode Efficiency	= 74.33
RhoMode Purity	= 77.98
RhoMode Acceptance	= 95.32

A1p1Mode Efficiency	= 53.16
A1p1Mode Purity	= 54.96
A1p1Mode Acceptance	= 96.70

MissSelectionRatio = 18.23

Si ECAL @ tautau

Efficiency, Purity & Acceptance (with **Loose Cut**)

Lepton1Mode Efficiency = 81.21 Lepton1Mode Purity = 91.99 Lepton1Mode Acceptance = 88.27

Lepton2Mode Efficiency = 86.48 Lepton2Mode Purity = 94.56 Lepton2Mode Acceptance = 91.46

PionMode Efficiency= 83.24PionMode Purity= 80.49PionMode Acceptance= 103.4

RhoMode Efficiency= 70.04RhoMode Purity= 82.36RhoMode Acceptance= 85.04

A1p1Mode Efficiency = 35.19 A1p1Mode Purity = 79.53 A1p1Mode Acceptance = 44.25

MissSelectionRatio = 16.54

Efficiency, Purity & Acceptance (with **MVA Cut**)

Lepton1Mode Efficiency = 93.00 Lepton1Mode Purity = 96.49 Lepton1Mode Acceptance = 96.38

Lepton2Mode Efficiency= 97.71Lepton2Mode Purity= 96.37Lepton2Mode Acceptance= 101.4

PionMode Efficiency	= 85.03
PionMode Purity	= 83.86
PionMode Acceptance	= 101.4
RhoMode Efficiency	= 85.22
Dhallada Duritu	

KHOMODE PUTTY	= 82.4/
RhoMode Acceptand	ce = 103.3

A1p1Mode Efficiency	= 59.72
A1p1Mode Purity	= 70.29
A1p1Mode Acceptance	= 84.96

MissSelectionRatio = 13.34

25

Polarization observables ω

Recover optimal observable ω with $\cos\psi^*$ in ρ mode. (BackUp Slides)

A lot of sensitivity of the polarization is lost compared to the π decay.

→ due to the mixing of longitudinally and transversely polarized vector states.

Some of the sensitivity can be regained by considering other variables are sensitive to the tau helicity.

- If one uses information of helicity of intermediate resonance, most of lost sensitivity can be regained.
- → Define \u03c6 as the angle between the charged \u03c6 and the \u03c6 initial direction
- In terms of the laboratory frame

cosψ* = (Επ± - Επο) / Ερ

Polarization combined ω with 3Detectors

- Formula of ω differs by decay modes, but ω can be summed up through all decay modes.

***** Include error forcibly

