

Higgs physics at CLIC

Philipp Roloff (CERN) on behalf of the CLIC detector and physics study

International Workshop on Future Linear Colliders (LCWS13) University of Tokyo, 12/11/2013

Reminder: Higgs production at CLIC

Reminder: Processes at higher energy

CLIC energy stages

- CLIC will be implemented in stages: optimised running conditions over a wide energy range
- The energy stages are defined by physics with additional technical considerations
- \rightarrow strategy can be adapted to discoveries at the LHC

Currently studied example scenario:

• <u>Stage 1: 350/375 GeV</u>, 500 fb⁻¹ HZ cross section, mass, Hv v c contribution sizeable, various branching rations, *top threshold scan*

• <u>Stage 2:</u> 1.4 TeV, 1.5 ab⁻¹

BSM physics, ttH, Higgs self-coupling, rare Higgs decays

• <u>Stage 3:</u> 3 TeV, 2 ab⁻¹

BSM physics, Higgs self-coupling, rare Higgs decays

Assumptions and numbers

Unpolarised cross sections for $m_{_{\rm H}} = 125 \text{ GeV}$ including ISR:

	350 GeV	1.4 TeV	3 TeV
$\sigma(e^+e^- \rightarrow ZH)$	134 fb	9 fb	2 fb
$\sigma(e^+e^- \rightarrow Hv_e^-v_e^-)$	52 fb	279 fb	479 fb
$\sigma(e^+e^- \rightarrow He^+e^-)$	7 fb	28 fb	49 fb

	350 Gev	1.4 IeV	3 Iev
L	500 fb ⁻¹	1500 fb ⁻¹	2000 fb ⁻¹
# ZH events	68 000	20 000	11 000
# $Hv_{e}v_{e}$ events	26 000	370 000	830 000
# He⁺e⁻ events	3 700	37 000	84 000
	L _{int} # ZH events # Hv _e v _e events # He⁺e⁻ events	350 Gev L_{int} 500 fb ⁻¹ # ZH events 68 000 # Hv _e v _e events 26 000 # He ⁺ e ⁻ events 3 700	350 Gev1.4 Tev L_{int} 500 fb ⁻¹ 1500 fb ⁻¹ # ZH events68 00020 000# Hv ve events26 000370 000# He ⁺ e ⁻ events3 70037 000

Number of $o^+o^ \downarrow$ \Box_{VV}	Polarization	Enhancement factor	
events significantly	$P(e^-): P(e^+)$	$e^+e^- \rightarrow ZH$	$e^+e^- \to H \nu_e \overline{\nu}_e$
enhanced with	unpolarized	1.00	1.00
polarisation	-80%: 0%	1.18	1.80
	-80%:+30%	1.48	2.34

Higgs physics at CLIC

Measurements at 350 GeV (1)

ILC with $P(e^{-}) = -80\%$, $P(e^{+}) = +30\%$

 \rightarrow lower cross section at 250 GeV compensated by higher luminosity at 350 GeV

Measurements at 350 GeV (2)

Measurement	Observable	Stat. precision	S
$\sigma(HZ) \ge BR(H \rightarrow T^{+}T^{-})$	$g^2_{HZZ}g^2_{HTT}$ / Γ_{H}	5.7%	ean
$\sigma(HZ) \ge BR(H \rightarrow b\overline{b})$	$g^2_{_{_{_{HZZ}}}}g^2_{_{_{_{Hbb}}}}$ / $\Gamma_{_{_H}}$	1% (estimated)	q pé
$\sigma(HZ) \ge BR(H \rightarrow c\overline{c})$	$g^2_{HZZ} g^2_{Hcc}$ / $\Gamma_{_{ m H}}$	5% [†] (estimated)	ning Irise
$\sigma(HZ) \ x \ BR(H \rightarrow gg)$		6% [†] (estimated)	sun pola
$\sigma(HZ) \times BR(H \rightarrow WW^*)$	${g^2}_{_{HZZ}}{g^2}_{_{HWW}}$ / $\Gamma_{_{H}}$	2% [†] (estimated)	As un

Sensitivity to the total Higgs decay width due to sizeable cross section for WW fusion:

$$\frac{\sigma(e^+e^- \to ZH) \times BR(H \to b\bar{b})}{\sigma(e^+e^- \to \nu_e \bar{\nu}_e H) \times BR(H \to b\bar{b})} \propto \left(\frac{g_{HZZ}}{g_{HWW}}\right)^2$$

$$\sigma(H\nu_e \bar{\nu}_e) \times BR(H \to WW^*) \propto \frac{g_{HWW}^4}{\Gamma_H}$$

Large Higgs samples produced in WW fusion at high energy:

- \rightarrow Precision measurements of σ ^ BR
- \rightarrow Access to rare decay modes

 \rightarrow talks by Ivanka Bozovic-Jelisavcic (H $\rightarrow \mu^{+}\mu^{-}$ at 1.4 TeV) and Eva Sicking (H $\rightarrow Z\gamma$ and H $\rightarrow \gamma\gamma$ at 1.4 TeV)

Measurement	Observable	Stat. precision
$\sigma(Hv_e^{-}v_e^{-}) \ge BR(H \rightarrow T^{+}T^{-})$	$g^2_{HWW}g^2_{HTT}$ / Γ_{H}	< 3.7%
$\sigma(Hv_e^{-}v_e^{-}) \ge BR(H \rightarrow b\overline{b})$	$g^2_{_{_{HWW}}}g^2_{_{_{Hbb}}}$ / $\Gamma_{_{_H}}$	0.3%
$\sigma(Hv_e^{-}v_e^{-}) \ge BR(H \rightarrow c\overline{c})$	$g^2_{_{_{HWW}}}g^2_{_{_{Hcc}}}$ / $\Gamma_{_{_H}}$	2.9%
$\sigma(Hv_e^{-}v_e^{-}) \ge BR(H \rightarrow gg)$		1.8%
$\sigma(Hv_e^{-}v_e^{-}) \ge BR(H \rightarrow \mu^{+}\mu^{-})$	$g^2_{_{_{_{HWW}}}}g^2_{_{_{H\mu\mu}}}$ / $\Gamma_{_{_H}}$	29%
$\sigma(Hv_e^{-}v_e^{-}) \ge BR(H \rightarrow \gamma\gamma)$		15% (preliminary)
$\sigma(Hv_e v_e) \ge R(H \rightarrow ZZ^*)$	$g^2_{HWW}g^2_{HZZ}$ / $\Gamma_{_H}$	3% (estimated)
$\sigma(Hv_e v_e) \ge BR(H \rightarrow WW^*)$	${\sf g}^{4}_{\rm HWW}$ / ${\sf \Gamma}_{ m H}$	1.1% (preliminary)

Higgs mass from $H \rightarrow b\overline{b}$ mass distribution: $\Delta(m_{\mu}) \approx 40$ MeV (estimated)

Measurement	Observable	Stat. precision
$\sigma(Hv_e^{}\overline{v}_e^{}) \ge BR(H \rightarrow b\overline{b})$	$g^2_{_{HWW}}g^2_{_{Hbb}}$ / $\Gamma_{_{_H}}$	0.2%
$\sigma(Hv_{e}v_{e}) \ge BR(H \rightarrow c\overline{c})$	$g^2_{_{_{_{HWW}}}}g^2_{_{_{_{Hcc}}}}$ / $\Gamma_{_{_H}}$	2.7%
$\sigma(Hv_{e}^{}v_{e}^{}) \ge BR(H \rightarrow gg)$		1.8%
$\sigma(Hv_{e}\bar{v}_{e}) \ge BR(H \rightarrow ZZ^{*})$	$g^2_{_{_{HWW}}}g^2_{_{_{HZZ}}}$ / $\Gamma_{_{_H}}$	2% (estimated)
$\sigma(Hv_{e}\bar{v}_{e}) \ge BR(H \rightarrow WW^{*})$	${\sf g}^4_{\rm HWW}$ / ${\sf \Gamma}_{ m H}$	0.8% (preliminary)

Higgs mass from $H \rightarrow b\overline{b}$ mass distribution: $\Delta(m_{\mu}) \approx 33$ MeV (estimated)

The ttH and Ze⁺e⁻ final states at 1.4 TeV

ΗZ

HHZ

3000

 \sqrt{s} [GeV]

2000

1000

0

Investigated final states: "6 jets": $t(\rightarrow qqb)\overline{t}(\rightarrow lv\overline{b})H(\rightarrow b\overline{b})$ "8 jets": $t(\rightarrow qqb)\overline{t}(\rightarrow qq\overline{b})H(\rightarrow b\overline{b})$

Combination of both final states: $\Delta \sigma(t\bar{t}H) / \sigma(t\bar{t}H) = 8.1\% \rightarrow \Delta g_{ttH} / \sigma_{ttH} = 4.3\%$

→ see talk by Marcelo Vogel

At high energy large samples of ZZ and WW fusion events available:

$$\frac{\sigma(He^+e^-) \times BR(H \to b\bar{b})}{\sigma(H\nu_e\bar{\nu}_e) \times BR(H \to b\bar{b})}$$

11

(many systematic effects cancel in the ratio)

 \rightarrow Precise determination of the ratio g_{HZZ} / g_{HWW}

 \rightarrow see talk by Aidan Robson

Double Higgs production at high energy

- The HHv v_e cross section is sensitive to the Higgs self coupling, λ , and the quartic g_{HHWW} coupling • $\sigma(HHv v_e) = 0.15 (0.59)$ fb at 1.4 (3) TeV
- \rightarrow high energy and luminosity crucial

→ see talk by Tomas Lastovicka

Measurement	1.4 TeV	3 TeV
$\Delta(g_{_{HHWW}})$	7% (preliminary)	3% (preliminary)
$\Delta(\lambda)$	28%	16%
$\Delta(\lambda)$ for P(e ⁻) = -80%	21%	12%

NB: The results on this slide were obtained for m_H = 120 GeV

Higgs physics at CLIC

			Stat	istical precis	sion
Channel	Measurement	Observable	350 GeV	1.4 TeV	3.0 TeV
			$500~{\rm fb}^{-1}$	1.5 ab^{-1}	2.0 ab^{-1}
ZH	Recoil mass distribution	m _H	120 MeV	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \rightarrow \mathrm{invisible})$	$\Gamma_{ m inv}$	tbd	_	—
ZH	$H \rightarrow b\overline{b}$ mass distribution	$m_{ m H}$	tbd	—	—
$H\nu_e\overline{\nu}_e$	$H \rightarrow b \overline{b}$ mass distribution	$m_{ m H}$	—	40 MeV*	33 MeV*
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{Z} \to \ell^+ \ell^-)$	$g^2_{\rm HZZ}$	4.2%	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ} g^2_{ m Hbb}/\Gamma_{ m H}$	$1\%^\dagger$	_	—
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \rightarrow \mathrm{c}\overline{\mathrm{c}})$	$g^2_{ m HZZ} g^2_{ m Hcc}/\Gamma_{ m H}$	$5\%^\dagger$	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \rightarrow \mathrm{gg})$		$6\%^\dagger$	_	_
ZH	$\sigma(\mathrm{HZ}) imes \mathit{BR}(\mathrm{H} ightarrow \tau^+ \tau^-)$	$g^2_{ m HZZ} g^2_{ m H au au}/\Gamma_{ m H}$	5.7%	_	—
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \mathrm{WW}^*)$	$g^2_{ m HZZ} g^2_{ m HWW}/\Gamma_{ m H}$	$2\%^\dagger$	—	—
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{ZZ}^*)$	$g^2_{ m HZZ} g^2_{ m HZZ} / \Gamma_{ m H}$	tbd	_	—
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HWW}g^2_{ m Hbb}/\Gamma_{ m H}$	$3\%^\dagger$	0.3%	0.2%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} ightarrow \mathrm{c}\overline{\mathrm{c}})$	$g^2_{ m HWW}g^2_{ m Hcc}/\Gamma_{ m H}$	_	2.9%	2.7%
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) imes \mathit{BR}(\mathrm{H} ightarrow \mathrm{gg})$		_	1.8%	1.8%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) imes \mathit{BR}(\mathrm{H} ightarrow \mathrm{t}^{+}\mathrm{t}^{-})$	$g^2_{ m HWW}g^2_{ m H au au}/\Gamma_{ m H}$	_	3.7%	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mu^{+}\mu^{-})$	$g^2_{ m HWW}g^2_{ m Huu}/\Gamma_{ m H}$	_	29%*	16%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) imes \mathit{BR}(\mathrm{H} ightarrow\gamma)$		_	15%*	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) imes BR(\mathrm{H} ightarrow \mathrm{Z}\gamma)$		_	tbd	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mathrm{WW}^{*})$	$g_{ m HWW}^4/\Gamma_{ m H}$	tbd	$1.1\%^{*}$	$0.8\%^*$
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{ZZ}^{*})$	$g^2_{ m HWW}g^2_{ m HZZ}/\Gamma_{ m H}$	_	$3\%^{\dagger}$	$2\%^\dagger$
He^+e^-	$\sigma(\mathrm{He^+e^-}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ}g^2_{ m Hbb}/\Gamma_{ m H}$	_	$1\%^\dagger$	$0.7\%^\dagger$
tīH	$\sigma(t\bar{t}H) \times BR(H \to b\bar{b})$	$g^2_{ m Htt}g^2_{ m Hbb}/\Gamma_{ m H}$	_	8%	tbd
$HHv_e \overline{v}_e$	$\sigma(\mathrm{HHv_e}\overline{\mathrm{v}}_\mathrm{e})$	<i>8</i> HHWW	_	7%*	3%*
$HHv_e \overline{v}_e$	$\sigma(\mathrm{HHv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}})$	λ	_	28%	16%
$HHv_e \overline{v}_e$	with $-80\% e^-$ polarization	λ	—	21%	12%

arXiv:1307.5288 final update: 01/10/2013

[†]: estimate

*: preliminary

Combined analysis (1)

LCD-Note-2013-012

- Fit to currently available results and a few estimates (see slide 13)
- Event rates multiplies by 1.8 for WW fusion above 1 TeV
- \rightarrow Simulates effect of P(e⁻) = -80% polarisation
- Fully model-independent
- Improvement expected when adding hadronic Z decays for $\sigma(HZ)$

Parameter	Measurement precision			Γ_i
	350 GeV 500 fb ⁻¹	$+1.4 \text{ TeV} +1.5 \text{ ab}^{-1}$	$+3.0 \text{ TeV} \\ +2.0 \text{ ab}^{-1}$	$\kappa_i = \frac{1}{\Gamma_i^{\text{SM}}}$
$\Gamma_{\rm H,model}$	1.6%	0.29%	0.22%	No invisible decays:
K _{HZZ} K _{HWW}	0.49% 1.5%	0.33% 0.15%	$0.24\% \\ 0.11\%$	$\Gamma_{\mathrm{H,model}} = \sum_{i} \kappa_i^2 \cdot BR_i^{\mathrm{SM}}$
$\kappa_{ m Hbb}$	1.7%	0.33%	0.21%	l
$\kappa_{ m Hcc}$	3.1%	1.1%	0.75%	Sub-percent
$\kappa_{ m H au au}$	3.5%	1.4%	tbd	precisions at high
$\kappa_{ m H\mu\mu}$	—	11%	5.2%	energy
$\kappa_{ m Htt}$	—	4.0%	tbd	\rightarrow Results strongly
$\kappa_{ m Hgg}$	3.6%	0.79%	0.56%	dependent on
$\kappa_{\rm H\gamma\gamma}$	_	5.5%	tbd	fit assumptions

Summary and conclusions

- The first stage of a CLIC collider at 350 GeV provides precise determinations of the absolute values of many Higgs boson couplings
- Subsequent high-energy running, here assumed at 1.4 and 3 TeV, improves the precision of many observables significantly and gives access to rare Higgs decays
- High-energy CLIC operation provides the potential to measure the trilinear Higgs self-coupling at the 10% level
- Combined fits to all measurements at 350 GeV, 350 GeV + 1.4 TeV and 350 GeV + 1.4 TeV + 3 TeV were performed to extract the Higgs couplings and width simultaneously
- A comprehensive paper on Higgs physics at CLIC is in progress