Measurement of the Higgs boson decays $H \rightarrow \gamma \gamma$ and $H \rightarrow Z \gamma$ at a CLIC collider operating at 1.4 TeV

Christian Grefe (CERN), Eva Sicking (CERN) on behalf of the CLIC detector and physics study

LCWS 2013 November 13, 2013 – Tokyo

Higgs Production at 1.4 TeV

- At $\sqrt{s} = 1.4 \text{ TeV}$, W^+W^- -fusion dominant H production channel $\sigma(e^+e^- \rightarrow Hv\bar{v}) \approx 244 \text{ fb}$ (with unpolarised e^{\pm} beams)
- Possibility to study also rare Higgs decay channels

Rare Higgs Decays $H \rightarrow \gamma \gamma$ and $H \rightarrow Z \gamma$

- $H \rightarrow \gamma \gamma$ and $H \rightarrow Z \gamma$ induced by loops over heavy charged particles
- Sensitive to physics beyond standard model

- Higgs mass of $M_H = 126 \text{ GeV}$
- $BR_{H\to\gamma\gamma} \approx 0.23 \% \to \sigma \times BR \approx 0.56 \text{ fb}$ • $N_{\text{signal}} \approx 834/1.5 \text{ ab}^{-1}$
- $\mathsf{BR}_{H \to Z\gamma} \approx 0.16 \,\% \to \sigma imes \mathsf{BR} \approx 0.39 \,\mathsf{fb}$
 - ${\sf BR}_{Z
 ightarrow q ar q} pprox 69.9\%$ $N_{\sf signal}(Z
 ightarrow q ar q) pprox 409/1.5\,{\sf ab}^{-1}$
 - $\label{eq:BRZ} \begin{array}{l} {\sf BR}_{Z
 ightarrow e^+ e^-} \approx 3.4\,\% \\ N_{{
 m signal}}(Z
 ightarrow e^+ e^-) \approx \ {\it 21}/{\rm 1.5\,ab^{-1}} \end{array}$
 - BR_{$Z \rightarrow \mu^+ \mu^- \approx 3.4\%$} $N_{\text{signal}}(Z \rightarrow \mu^+ \mu^-) \approx 21/1.5 \,\text{ab}^{-1}$
 - $Z
 ightarrow au^+ au^-$ not studied

Detector Simulation and Reconstruction

- Full CLIC_SiD detector simulation of signal and background events
 - Same software chain as used for the CLIC Conceptional Design Report
 - Full GEANT4 detector simulation
 - Overlay of $\gamma\gamma \rightarrow$ hadrons background
 - Full event reconstruction

Photon Reconstruction

• $H
ightarrow \gamma \gamma$ and $H
ightarrow Z \gamma$ studies test quality of CLIC_SiD photon reconstruction

- Photon energy resolution and Higgs mass resolution for $H \rightarrow \gamma \gamma$ signal sample
- Mean photon energy of signal sample $E_{\gamma} = 135 \, {
 m GeV}$

$H \rightarrow \gamma \gamma$

Background Processes $H \rightarrow \gamma \gamma$

Generator level cuts

- At least two photons with E > 10 GeV, $p_T > 5 \text{ GeV}$ and $5^\circ < \theta < 175^\circ$
- At least one Higgs candidate with 110 GeV $< M(\gamma\gamma) < 140$ GeV
- No visible lepton or quark with $10^\circ < heta < 170^\circ$

Process (- ISR)	σ [fb]*	Events in 1.5ab^{-1}
$e^+e^- ightarrow v ar v \gamma$	30	44000
$e^+e^- ightarrow v ar{v} \gamma \gamma$	17	26000
${ m e^+e^-} ightarrow \gamma\gamma$	27	41000
$e^+e^- ightarrow e^+e^-\gamma$	290	430000
$e^+e^- ightarrow e^+e^-\gamma\gamma$	13	19000
$e^+e^- ightarrow q ar q \gamma$	67	100000
$e^+e^- o qar q \gamma\gamma$	17	25000

Background processes

• $e^{\pm}\gamma$ and $\gamma\gamma$ initial state processes were found to be negligible for this analysis

*after generator level cuts

Eva Sicking (CERN)

$H \rightarrow \gamma \gamma$

Reconstruction and Pre-Selection

Reconstruction

- Use only particles that pass timing cuts
- Search for two photons of highest energy
- Combine two selected photons to Higgs candidate

Pre-selection

- $\bullet~$ Use only reconstructed photons with $E>15\,GeV$ and $p_{T}>10\,GeV$
- $\bullet\,$ Invariant mass of Higgs candidate daughters $115 < M(\gamma,\gamma) < 135\,GeV$
- Require both photons to be isolated: no charged PFO with $p_{\rm T} > 5 \, GeV$ within 30°
- Remaining visible energy: $E_{vis} E(\gamma \gamma) < 250 \text{ GeV}$
- Highest p_{T} photon: $\mathbf{p}_{\mathrm{T}}(\gamma_{1}) > 40 \,\mathrm{GeV}$

$H ightarrow \gamma \gamma$

Kinematic Variables

- Higgs candidate mass: $M(\gamma\gamma)$
- Higgs candidate polar angle: $heta(\gamma\gamma)$
- Higgs candidate azimuthal angle: $\phi(\gamma\gamma)$
- Higgs candidate transverse momentum: $p_{\rm T}(\gamma\gamma)$
- Higgs candidate energy: $E(\gamma\gamma)$
- Higgs candidate velocity: $eta(\gamma\gamma)$
- Angle between the photons: $\Delta \theta(\gamma \gamma)$
- Remaining visible energy: $E_{vis} E(\gamma\gamma)$
- Photon transverse momenta: $p_{\rm T}(\gamma_1)$ and $p_{\rm T}(\gamma_2)$
- Photon polar angles: $heta(\gamma_1)$ and $heta(\gamma_2)$
- Helicity angle: $\cos \theta^*$

Boosted Decision Tree (BDT)

- Use TMVA for classification
- Adaptive boosting using 400 trees

 $H \rightarrow \gamma \gamma$

Boosted Decision Tree (BDT)

 $H \rightarrow \gamma \gamma$

Selected Events in $H \rightarrow \gamma \gamma$ Analysis

Process	σ [fb]*	Eve		
		Generator level cut	Pre-Selection	BDT
$H ightarrow \gamma \gamma$	0.56	834	708 (85%)	367 (44%)
$e^+e^- ightarrow v ar{v} \gamma$	30	44250	15130 (34%)	1338 (3%)
$e^+e^- ightarrow v ar{v} \gamma \gamma$	17	25988	8066 (31%)	802 (3.1%)
$e^+e^- o \gamma\gamma$	27	40830	8069 (20%)	73 (0.18%)
$e^+e^- ightarrow e^+e^-\gamma$	290	433465	39717 (9.2%)	341 (0.079%)
$e^+e^- ightarrow e^+e^-\gamma\gamma$	13	18919	993 (5.2%)	4 (0.025%)
$e^+e^- ightarrow q ar q \gamma$	67	100524	825 (0.82%)	1 (0.002%)
$e^+e^- ightarrow q ar q \gamma \gamma$	17	24848	353 (1.4%)	4 (0.017%)

 $H \rightarrow \gamma \gamma$

*after generator level cuts, except for signal sample

$H \rightarrow Z \gamma$

Background Processes $H \rightarrow Z\gamma$: e^+e^-

Generator level cuts

- At least two charged leptons **or** two quarks and one photon of E > 15 GeV, $p_T > 10 \text{ GeV}$, and $10^\circ < \theta < 170^\circ$.
- At least one Higgs candidate with $100 < M(Z\gamma) < 150 \, {\rm GeV}$

Background processes

Process (- ISR)	$\sigma[fb]^*$	Events in 1.5ab^{-1}
$e^+e^- \rightarrow v\bar{v}q\bar{q}\gamma$ $e^+e^- \rightarrow v\bar{v}q\bar{q}$ $e^+e^- \rightarrow q\bar{q}q\bar{q}$ $e^+e^- \rightarrow v\bar{v}l^+l^-\gamma$ $e^+e^- \rightarrow v\bar{v}l^+l^-\gamma$ $e^+e^- \rightarrow q\bar{q}l^+l^-\gamma$	36.9 121.8 4009 [†] 1328 [†] 8.7 23 85 18.2	55k 183k 6M 2M 13k 35k 128k 27k
$\frac{e^+e^- \to qqI^+I^-}{e^+e^- \to v\bar{v}H \to v\bar{v}\gamma\gamma}$	95 0.56	143k 842

*after generator level cuts

[†]w/o generator level cuts

Eva Sicking (CERN)

$H \rightarrow Z\gamma$

Background Processes $H \rightarrow Z\gamma$: $e^+\gamma/\gamma e^-$

Process (- ISR)	σ [fb]*	Events in 1.125ab^{-1}
$\begin{array}{c} \gamma \text{ from BS} \\ e^{\pm}\gamma \rightarrow e^{\pm}q\bar{q}\gamma \\ e^{\pm}\gamma \rightarrow e^{\pm}q\bar{q}v\bar{v} \\ e^{\pm}\gamma \rightarrow e^{\pm}l^{+}l^{-}\gamma \\ e^{\pm}\gamma \rightarrow e^{\pm}l^{+}l^{-}q\bar{q} \\ e^{\pm}\gamma \rightarrow e^{\pm}q\bar{q}q\bar{q} \\ e^{\pm}\gamma \rightarrow e^{\pm}q\bar{q}a\bar{q} \end{array}$	72 2.6 66 0.94 239 292 [†] 477 [†]	81k 3k 74k 1k 269k 329k 537k
Process (- ISR)	σ [fb]*	Events in 1.5ab^{-1}

• Photon from beam strahlung (BS) or equivalent photon approximation (EPA)

*after generator level cuts for $e^+\gamma$, similar for γe^-

[†]additional cuts during generation $E_{l,q} > 10 \text{ GeV}$, $8^\circ < heta_{l,q} < 172^\circ$

$H \rightarrow Z \gamma$

Reconstruction and Preselection

Reconstruction

- Use particles that pass timing cuts
- Search for photon of highest energy
- Search for two e/μ of highest energy
- $\bullet~$ Combine photons from bremsstrahlung with found leptons: Angle(I $^{\pm},\gamma) < 0.3~deg$
- If less than 2 charged leptons are found, use available particles to form two jets: k_T -algorithm, jet radius R < 1.2
- Combine photon of highest energy and the lepton/jet pair to Higgs candidate

Preselection

- Use only reconstructed $e,~\mu,~jets,~and~\gamma$ of E>17.5~GeV and $p_T>12.5~GeV$

Kinematic Variables

- Mass *m*, velocity β , polar angle θ , transverse momentum p_{T} , energy *E* of *H*, *Z*, and γ
- $\sum \vec{p}_{\mathrm{T}}$ of *H* candidate daughters
- Thrust, oblateness, sphericity, aplanarity of lepton/jet pair and γ
- Missing (transverse) energy ∉ (∉_T) of lepton/jet pair and γ
- Visible energy excluding the reconstructed H candidate $E_{vis} E_H$
- Particle multiplicity N
- Angle, $\Delta heta$ and $\Delta \phi$ between vectors of Z and γ
- $\cos \theta^*$ in Higgs rest frame
- In Z
 ightarrow q ar q case
 - Number of particles used to reconstruct Z
 - y_{n,n+1} value associated with merging from n to n+1 jets, n = 1,2,3,4

Boosted Decision Tree (BDT) Training

 $H \rightarrow Z\gamma$

- Use TMVA for classification
- Adaptive boosting using 400 trees gives best results

BDT Classification (Quark Channel)

 $H \rightarrow Z\gamma$

- Best significance: 1.985
- $\delta(\sigma \times BR)$: 50%
- Signal efficiency: 23.5 %

Eva Sicking (CERN)

$H ightarrow Z \gamma$

Selected Events (Quark Channel)

Process	$Events^*$ in 1.5 ab^{-1}	Events after pre-sel.	Events after BDT
$H ightarrow Z \gamma ightarrow q ar q \gamma$	409 [†]	221 (54.0 %)	96 (23.5%)
$H \rightarrow Z \gamma \rightarrow l^+ l^- \gamma$	21^{\dagger}	2 (9.2 %)	0 (0.6 %)
$H \rightarrow \gamma \gamma$	834 [†]	2 (0.2%)	0(0%)
$e^+e^- \rightarrow v \bar{v} q \bar{q} \gamma$	55k	10k (19.2%)	986 (1.8%)
$e^+e^- ightarrow var{v}qar{q}$	183k	20k (10.8 %)	995 (`0.5 %`)
$e^+e^- ightarrow qar q$	6M [†]	34k (0.6%)	0(0%)
$e^+e^- ightarrow q ar q q ar q$	2M [†]	18k (0.9%)	0(0%)
$e^+e^- ightarrow v \overline{v} I^+ I^- \gamma$	13k	408 (̀ 3.1 %)́	3 (~0%)
$e^+e^- ightarrow v \overline{v} l^+ l^-$	35k	790 (`2.3 %)́	2 (~0%)
$e^+e^- ightarrow I^+I^-I^+I^-$	127k	3k (2.4%)	6 (`~ 0 %)
$e^+e^- ightarrow qar{q} l^+ l^- \gamma$	27k	1k (4.3%)	3 (~0%)
$e^+e^- ightarrow q\bar{q}l^+l^-$	143k	9k (6.6%)	27 (`~0%`)
$e^{\pm}\gamma ightarrow e^{\pm}q\bar{q}v\bar{v}$ (BS+EPA)	8k	641 (8.0%)	28 (0.4%)
$e^{\pm}\gamma ightarrow e^{\pm}qar{q}\gamma$ (BS+EPA)	291k	20k (6.8%)	38 (~0%)
$e^{\pm}\gamma ightarrow e^{\pm}qar{q}$ (BS+EPA)	2.7M [‡]	180k (6.6 %)	153 (\sim 0 $\%$)
$e^{\pm}\gamma \rightarrow e^{\pm}q\bar{q}q\bar{q}$ (BS+EPA)	4.8M	85k (1.8%)	17 (~0%)
$e^{\pm}\gamma \rightarrow e^{\pm}I^{+}I^{-}$ (BS+EPA)	2.7 <i>M</i> ‡	29K (1.1%)	0(0%)
$e^{\pm}\dot{\gamma} \rightarrow e^{\pm}l^{+}l^{-}\dot{\gamma}$ (BS+EPÁ)	300k	5k (1.7%)	0 (0 %)
$e^{\pm}\gamma \rightarrow e^{\pm}q\bar{q}I^{+}I^{-}$ (BS+EPA)	4k	· - (-)	- (-)́

*after generator level cuts

[†]w/o generator level cuts

[‡]additional cuts during generation $E_{l,q} > 10 \, {
m GeV}$, $8^\circ < heta_{l,q} < 172^\circ$

Eva Sicking (CERN)

Summary & Outlook

• Results at 1.4 TeV using unpolarised beams

- $H \rightarrow \gamma \gamma$ results
 - Significance 6.8
 - $\delta(\sigma \times \mathsf{B}R)$: 14.7%
- $H \rightarrow Z\gamma$ (combined) results
 - Significance 2.1
 - $\delta(\sigma \times BR)$: 47.1%
 - Update as soon as all backgrounds are available

Summary & Outlook

- Results at 1.4 TeV using unpolarised beams
 - $H \rightarrow \gamma \gamma$ results
 - Significance 6.8
 - $\delta(\sigma \times \mathsf{B}R)$: 14.7%
 - $H \rightarrow Z\gamma$ (combined) results
 - Significance 2.1
 - $\delta(\sigma \times BR)$: 47.1%
 - Update as soon as all backgrounds are available

Polarisation

- 80% polarisation of electron beam at 1.4 TeV
- Signal cross section increases by 80 %
- Background cross sections increase at most by 80 %
- Significance increases at least by $\sqrt{1.8}$
 - $\delta(\sigma imes \mathsf{BR}_{H o \gamma\gamma}) \le 11\%$
 - $\delta(\sigma imes \mathsf{BR}_{H o Z\gamma}) \le 35\%$

Outlook 3 TeV

- Cross section of W^+W^- -fusion increases by 70% with respect to 1.4 TeV
- Expect further decrease of $\delta(\sigma \times BR)$

Detector Simulation and Reconstruction - Details

 Full CLIC_SiD detector simulation of signal and background events

- Assuming $M_H = 126 \, \text{GeV}$
- Event generation with WHIZARD v.1.95, including ISR and CLIC BS
- Fragmentation using PYTHIA
- Full simulation with SLIC v.2.9.8 in CLIC_SID_CDR using GEANT4 v.9.3.2
- Overlay of $\gamma\gamma \rightarrow$ hadrons background before digitization
- Digitization and track reconstruction using org.lcsim
- Particle flow reconstruction and particle identification using PANDORAPFA

BDT Classification (Muon Channel)

- Best significance is 0.653 \rightarrow uncertainty of $\sigma \cdot \text{BR} = 153\,\%$
- BDT signal efficiency: 13%, 2 events of 14 events after pre-sel.
- BDT bkg. efficiency: 0.003%, 7 events of 228970 events after pre-sel.

Selected Events (Muon Channel)

Process	$Events^*$ in 1.5 ab^{-1}	Events after pre-sel.	Events after BDT
$H \rightarrow l^+ l^- \gamma$	21^{\dagger}	14 (66 %)	2 (9.2 %)
$H \rightarrow q \bar{q} \gamma$	409 [†]	0(0%)	0(0%)
$H \rightarrow \gamma \gamma$	834 [†]	0(0%)	0(0%)
$ee ightarrow v ar{v} q ar{q} \gamma$	55k	2 (~0 %)	0 (0 %)
$ee ightarrow v ar{v} q ar{q}$	183k	7 (~0 %)	0(0%)
ee $ ightarrow qar{q}$	6M [†]	531 (~0%)	0(0%)
$ee ightarrow q \overline{q} q \overline{q}$	$2M^{\dagger}$	127 (~0 %)	0(0%)
$ee \rightarrow v \bar{v} l^+ l^- \gamma$	13k	604 (`4.6 %)	5 (~0%)
$ee ightarrow v ar{v} I^+ I^-$	35k	529 (`1.5 %́)	0(0%)
$ee \rightarrow I^+ I^- I^+ I^-$	127k	3981 (3.1 %)	2 (~0%)
$ee ightarrow qar{q} l^+ l^- \gamma$	27k	219 (0.8 %)	0(0%)
$ee ightarrow q ar{q} l^+ l^-$	143k	160 (0.1 %)	0(0%)
$e^{\pm}\gamma ightarrow e^{\pm}qar{q}$ (BS+EPA)	2.7M [‡]	Ò(0%)	0(0%)
$e^{\pm}\gamma \rightarrow e^{\pm}q\bar{q}q\bar{q}$ (BS+EPA)	4.3M	23 (~0 %)	0(0%)
$e^{\pm}\gamma \rightarrow e^{\pm}l^{+}l^{-}$ (BS+EPA)	2.7M [‡]	200k (7.4 %)	0(0%)
$e^{\pm}\gamma \rightarrow e^{\pm}q\bar{q}v\bar{v}$ (BS+EPÁ)	7940	1 (~0 %)	0 (0 %)
$e^{\pm}\gamma \rightarrow e^{\pm}I^{+}I^{-}\gamma$ (BS+EPA)	302k	23k (`7.1 %)	0 (`0%)
$e^{\pm}\gamma \rightarrow e^{\pm}q\bar{q}\gamma$ (BS+EPA)	292k	23 (`~0 %)	0 (0 %)
$e^{\pm}\gamma \rightarrow eq\bar{q}I^{+}I^{-}$ (BS+EPA)	4k	`-(-)́	- (-)

*after generator level cuts

[†]w/o generator level cuts

 ‡ additional cuts during generation $E_{l,q} > 10 \ {\rm GeV}, \ 8^{\circ} < \theta_{l,q} < 172^{\circ}$

BDT Classification (Electron Channel)

- $\bullet~$ Best significance is 0.397 \rightarrow uncertainty of $\sigma \cdot \text{BR} = 252\,\%$
- BDT signal efficiency: 26%, 3 events of 10 events after pre-sel.
- BDT bkg. efficiency: 0.04 %, 45 events of 119287 events after pre-sel.

Selected Events (Electron Channel)

Process	$Events^*$ in 1.5 ab^{-1}	Events after pre-sel.	Events after BDT
$H \rightarrow I^+ I^- \gamma$	21^{\dagger}	10 (48.9%)	3(13%)
$H ightarrow q ar q \gamma$	409 [†]	0(0%)	0(0%)
$H \rightarrow \gamma \gamma$	834 [†]	1 (Ò.1 %)	0(0%)
$e^+e^- ightarrow var{v}qar{q}\gamma$	55k	11 (~0%)	0(0%)
$e^+e^- ightarrow var{v}qar{q}$	183k	16 (~0%)	0(0%)
$e^+e^- ightarrow qar q$	6M [†]	3427 (0.1%)	0(0%)
$e^+e^- ightarrow q \bar{q} q \bar{q}$	$2M^{\dagger}$	2332 (0.1%)	0(0%)
$e^+e^- ightarrow v \overline{v} I^+ I^- \gamma$	13k	1279 (`9.8 <i>%</i>)	13 (0.1%)
$e^+e^- ightarrow v ar{v} I^+ I^-$	35k	2680 (7.7%)	13 (~0%)
$e^+e^- \rightarrow I^+I^-I^+I^-$	127k	3664 (2.9%)	4 (~0%)
$e^+e^- ightarrow qar{q} I^+ I^- \gamma$	27k	209 (0.8%)	0(0%)
$e^+e^- ightarrow qar{q} l^+ l^-$	143k	743 (0.5%)	1 (~0%)
$e^{\pm}\gamma ightarrow e^{\pm}qar{q}$ (BS+EPA)	2.7M [‡]	10k(0.3%)	0(0%)
$e^{\pm}\gamma ightarrow e^{\pm}qar{q}qar{q}$ (BS+EPA)	4.3M	2616 (0.1%)	0(0%)
$e^{\pm}\gamma ightarrow e^{\pm} I^{+} I^{-}$ (BS+EPA)	2.7M [‡]	74k (2.7%)	0(0%)
$e^{\pm}\gamma ightarrow e^{\pm}qar{q}var{v}$ (BS+EPA)	7940	22 (1.1%)	0(0%)
$e^{\pm}\gamma \rightarrow e^{\pm}I^{+}I^{-}\gamma$ (BS+EPA)	302k	16k (5.3%)	10 (~0 %)
$e^{\pm}\gamma ightarrow e^{\pm}qar{q}\gamma$ (BS+EPA)	292k	1517 (0.5%)	0(0%)
$e^{\pm}\gamma ightarrow eq \bar{q} I^{+} I^{-}$ (BS+EPA)	4k	- (-)	- (-)

*after generator level cuts

[†]w/o generator level cuts

 ‡ additional cuts during generation $E_{l,q} > 10 \ {\rm GeV}, \ 8^{\circ} < \theta_{l,q} < 172^{\circ}$

