Model independent determination of HWW coupling and Higgs total width @ ILC

Junping Tian (KEK) LCWS13, Nov.11-15, 2013 @ University of Tokyo

(analysis for snowmass)

J. Tian, C. Duerig, K. Fujii, J. List: LC-REP-2013-022

precision HVV coupling

unitarity in VV—>VV scattering will be violated, if there's no scalar providing hVV coupling

in SM:
$$g_{HVV} = \frac{2m_V^2}{v}$$
 saturated by one H
generally: $\sum_i g_{h_iVV}^2 = \frac{4m_V^4}{v^2}$ $\frac{g_{h_iWW}}{g_{h_iZZ}} = \frac{m_W^2}{m_Z^2}$

unitarity & CP-conserving: $g_{h_iVV} \leq g_{HVV}$

if deviation (<1) observed: hint of additional scalar bosons

if deviation (>1) observed: hint of CP-violation in Higgs sector

see Koji's talk yesterday: 1% deviation ~ <10 TeV new Higgs boson 10% deviation ~ < 2 TeV new Higgs boson

cf: ILC Higgs White Paper; M. Peskin, hep-ph/1207.2516

HVV coupling @ ILC

recoil mass study —> total ZH cross section.
 (see Shun and Taikan's talks yesterday)

neutrinos can't be directly reconstructed —> recoil technique not working for vvH.

$$Y_1 = \sigma_{ZH} \propto g_{HZZ}^2$$

 $Y_{2} = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to b\bar{b}) \propto g_{HWW}^{2} \cdot \operatorname{Br}(H \to b\bar{b})$ $Y_{3} = \sigma_{ZH} \cdot \operatorname{Br}(H \to b\bar{b}) \propto g_{HZZ}^{2} \cdot \operatorname{Br}(H \to b\bar{b})$

 Y_2/Y_3 gives accurate test of g_{HWW}/g_{HZZ} , and with g_{HZZ} gives absolute normalization of g_{HWW} .

$$g_{HZZ} \propto \sqrt{Y_1}$$
$$g_{HWW} \propto \sqrt{\frac{Y_2}{Y_3}} \cdot g_{HZZ} \propto \sqrt{\frac{Y_1Y_2}{Y_3}}$$

WW-fusion production fully activated: 14 fb @ 250 GeV ---> 150 fb @ 500 GeV

Y₂ @ 500 GeV is today's topic. (see Hiroaki's talk yesterday for Y₃ @ 250 GeV)

simulation setup

(DBD softwares, thank A. Miyamoto for preparing all new signal samples) Polarization: (e-,e+)=(-0.8,+0.3) $E_{\rm cm} = 500 {\rm GeV}, M_H = 125 {\rm GeV}$ $\int L = 500 {\rm fb}^{-1}$

	Cross Section / fb	Expected Events	Generated
vvh (WW fusion)	1.49×10 ²	7.47×10^{4}	1.88×10 ⁵
vvh (ZH)	2.04×10 ¹	1.02×10 ⁴	4.64×10 ⁴
4f_sznu_sl	5.59×10 ²	2.79×10 ⁵	4.71×10 ⁴
4f_sw_sl	4.85×10 ³	2.43×10 ⁶	4.07×10 ⁵
4f_zz_sl	3.66×10 ²	1.83×10 ⁵	4.18×10 ⁴
4f_ww_sl	5.56×10 ³	2.78×10 ⁶	4.45×10 ⁵
4f_sze_sl	1.88×10 ³	9.41×10 ⁵	2.73×10 ⁵
6f_yyveev	1.21×10 ¹	6.05×10 ³	4.80×10 ³
6f_yyvelv	4.74×10 ¹	2.37×10 ⁴	1.76×10 ⁴
6f_yyvllv	4.74×10 ¹	2.36×10 ⁴	1.76×10 ⁴
Total BG	1.34×10 ⁴	6.68×10 ⁶	

 $e^+ + e^- \to \nu \bar{\nu} H \to \nu \bar{\nu} (b\bar{b})$

full simulation @ 500GeV

pre-selection:

- anti-kt jet-clustering to remove the very forward overlaid particles
- reject the events with isolated electron or muon
- two jets clustering and flavor tagging, each with more than 8 particles **final-selection:**
 - Visible energy: (100, 300) GeV Pt > 20 GeV (cut1)
 - Isolate lepton rejection: P(Lmax) < 2*Econe + 20 (cut2)
 - B-tagging: Prob(Jet1) + 2Prob(Jet2) > 0.92 (cut3)
 - Missing mass (Z rejection): >172 GeV (cut4)
 - Higgs mass: (100, 143) GeV (cut5)

several distributions

6

Higgs Mass (after the preceding 4 cuts)

100 GeV < M(H) < 143 GeV

signal and backgrounds (reduction table) $e^+ + e^- \to \nu \bar{\nu} H \to \nu \bar{\nu} (b\bar{b})$ $L = 500 \text{ fb}^{-1}$ Polarization: (e-,e+)=(-0.8,+0.3) $E_{\rm cm} = 500 {\rm GeV}, M_H = 125 {\rm GeV}$ Expected pre-selction cut2 cut3 cut1 cut4 cut5 29199 (28598) 34278 vvh (fusion) 7.47×10^{4} 59698 54529 54048 35598 vvh (ZH) 1.02×10^{4} 7839 7301 7224 1951 1512 4863 4f_sznu_sl 2.79×10^{5} 39125 3957 234259 203489 202977 44943 4f_sw_sl 2.43×10^{6} 228436 135164 121791 1495 911 132 4f_zz_sl 1.83×10^{5} 102172 60684 59865 13036 5736 461 4f_ww_sl 2.78×10^{6} 653997 287428 250944 3851 1145 176 4f_sze_sl 9.41×10^{5} 65011 1311 91.1 40.7 5.51 1259 6f_yyveev 6.05×10^{3} 931 306 104 96.6 87.4 20.4 6f_yyvelv 2.37×10^{4} 997 907 5450 2425 1116 237 6f_yyvllv 2.36×10^{4} 8009 4272 2813 2556 2383 674 7176 BG 6.68×10⁶ 1.31×10^{6} 702379 648094 71929 52285 significance 150 35 43.3 106 114 44.6 $\frac{\delta(\sigma \cdot \mathrm{Br})}{\sigma \cdot \mathrm{Br}} = 0.667\%$ $\frac{S}{\sqrt{S+B}} = \frac{28598}{\sqrt{29199 + 7176}}$ = 1508 LoI result 0.60%, extrapolation in DBD 0.661%

HWW coupling @ ILC

$$g_{HWW} \propto \sqrt{\frac{Y_2}{Y_3}} \cdot g_{HZZ} \propto \sqrt{\frac{Y_1Y_2}{Y_3}}$$

$$Y_1 = \sigma_{ZH}$$
$$Y_2 = \sigma_{\nu\bar{\nu}H} \cdot \text{Br}(H \to b\bar{b})$$
$$Y_3 = \sigma_{ZH} \cdot \text{Br}(H \to b\bar{b})$$

$\Delta g_{HWW}/g_{HWW}$	250 GeV	+ 500 GeV
Baseline	4.8%	1.2%
LumiUP	2.3%	0.58%

$$\Delta \frac{g_{HWW}}{g_{HZZ}} \sim \Delta Y_2 \oplus \Delta Y_3$$

- WW-fusion production is as important as ZH production.
- eventually limited by recoil mass measurement, since statistically Y₂, Y₃ far better than Y₁.

Higgs total width Γ_H

model free, one of the great advantages of ILC

$$\Gamma_{H} = \frac{\Gamma_{HZZ}}{\operatorname{Br}(H \to ZZ^{*})} \propto \frac{g_{HZZ}^{2}}{\operatorname{Br}(H \to ZZ^{*})} \qquad \text{Br(H->ZZ^{*}) very sm}$$

$$\bigstar \quad \Gamma_{H} = \frac{\Gamma_{HWW}}{\operatorname{Br}(H \to WW^{*})} \propto \frac{g_{HWW}^{2}}{\operatorname{Br}(H \to WW^{*})} \qquad \text{better option}$$

Br(H->ZZ*) very small, not very precisely measured

 $\overline{\mathbf{v}}$ $Y_4 = \sigma_{\nu \bar{\nu} H} \cdot \operatorname{Br}(H \to H)$

$$Y_4 = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to WW^*) \propto \frac{g_{HWW}^4}{\Gamma_0}$$

 Y_4 and g_{HWW} gives Higgs total width --> absolute normalization of other couplings.

$$\Gamma_H \propto \frac{g_{HWW}^4}{Y_4} \propto \frac{Y_1^2 Y_2^2}{Y_3^2 Y_4}$$

any obvious deviation on $\Gamma_{\rm H}$ —> new Higgs decay modes

two methods to measure Y₄: full hadronic or semi-leptonic decay of WW*

 $e^+ + e^- \rightarrow \nu \bar{\nu} H \rightarrow \nu \bar{\nu} (WW^*) \rightarrow \nu \bar{\nu} q q q q$

full simulation @ 500GeV

pre-selection:

- MVA to remove the very forward overlaid particles (see my talk yesterday)
- reject the events with isolated electron or muon
- four jets clustering and flavor tagging, No. of PFOs >= 40 (7,6,5,4)

final-selection:

- Y34 > 0.0026, Y23 > 0.0076 (cut1)
- Evis < 230 GeV, Pt > 20 GeV, MissingMass > 200 GeV (cut2)
- Isolate lepton rejection: P(Lmax) < 2*Econe + 9. (cut3)
- b-jet rejection: (btag1+2btag2<0.7, btag3+2btag4<0.14) (cut4)
- 54 < M(W1) < 94, 11 < M(W2) < 64 (cut5)
- Higgs mass: (114, 142) GeV (cut6)

114 GeV < M(H) < 142 GeV

signal and backgrounds (reduction table) $e^+ + e^- \rightarrow \nu \bar{\nu} H \rightarrow \nu \bar{\nu} (WW^*) \rightarrow \nu \bar{\nu} q q q q$ Polarization: (e-,e+)=(-0.8,+0.3) $E_{\rm cm} = 500 {\rm GeV}, M_H = 125 {\rm GeV}$ $\int L = 500 {\rm fb}^{-1}$								
	Expected	pre-selction	cut1	cut2	cut3	cut4	cut5	cut6
vvh (fusion)	7.47×10 ⁴	42373	14461	11684	11315	7415	6746	4970(3136)
vvh (ZH)	1.02×10 ⁴	5497	911	240	232	144	120	86.8
4f_sznu_sl	2.79×10 ⁵	140092	23016	18123	17841	14157	9675	1308
4f_sw_sl	2.43×10 ⁶	220670	40715	11746	11383	11013	5317	778
4f_zz_sl	1.83×10 ⁵	57640	7041	722	690	546	342	65.1
4f_ww_sl	2.78×10 ⁶	416386	46390	4816	4149	3934	2965	806
4f_sze_sl	9.41×10 ⁵	45911	19160	38.4	38.4	32.1	8.56	0
6f_yyveev	6.05×10 ³	52.5	35.7	9.24	0.02	0	0	0
6f_yyvelv	2.37×10 ⁴	703	498	102	45.6	9.51	5.78	3.88
6f_yyvllv	2.36×10 ⁴	2025	1420	358	252	30.4	26.6	7.6
BG	6.68×10 ⁶	8.89×10 ⁵	139185	36156	34632	29866	18462	3055
significance		6.8	13.4	19.4	19.5	21	24.6	35
$\underline{S} = 3136 \qquad \underline{\delta(\sigma \cdot Br)} = 2.8\%$								
$\sqrt{S+B} = \sqrt{4970 + 3055} = 0.0 -2.070$ $\sigma \cdot Br$ LoI result 3.0%, extrapolation in DBD 2.6% ¹³								

$e^+ + e^- \to \nu \bar{\nu} H \to \nu \bar{\nu} (WW^*) \to \nu \bar{\nu} l \nu q q$

full simulation @ 500GeV samples with DBD software

pre-selection:

- select one isolated electron or muon (BS and FSR recovered)
- MVA to remove the very forward overlaid particles
- two jets clustering and flavor tagging, each jet at least two charged high Pt (>500 MeV) particles (to either suppress τ from Z or W, or overlay contamination)

final-selection:

- separate to two categories, muon-type or electron-type, which have very different background contamination and hence selection optimization.
- require large missing energy and large missing Pt (to suppress full hadronic background).
- use flavor tagging to suppress events with b-jets.
- cut on angle between W and lepton, recoil mass of one W (to suppress the dominant background WW).
- cut on electron polar angle (to suppress ee or ev fusion background), also angle between electron and jet (to suppress mis-tagged electron).
- Higgs mass cut

Higgs mass and W mass

$$e^+ + e^- \rightarrow \nu \bar{\nu} H \rightarrow \nu \bar{\nu} (WW^*) \rightarrow \nu \bar{\nu} l \nu q q$$

Polarization: (e-,e+)=(-0.8,+0.3) $E_{\rm cm} = 500 \,{\rm GeV}, M_H = 125 \,{\rm GeV} \qquad \int L = 500 \,{\rm fb}^{-1}$

muon-category:

#Signal	#Background	significance
1002 (982)	2187	17.4σ

electron-category:

#Signal	#Background	significance
879 (858)	2528	14.7σ

$$\frac{\Delta(\sigma \cdot \mathrm{Br})}{\sigma \cdot \mathrm{Br}} = 4.4\%$$

comparable with WW*-->qqqq (2.8%), together giving accuracy of σ Br(WW*) 2.4%

Higgs total width Γ_H @ ILC

$$\Gamma_H \propto \frac{g_{HWW}^4}{Y_4} \propto \frac{Y_1^2 Y_2^2}{Y_3^2 Y_4}$$

$$Y_{1} = \sigma_{ZH}$$

$$Y_{2} = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to b\bar{b})$$

$$Y_{3} = \sigma_{ZH} \cdot \operatorname{Br}(H \to b\bar{b})$$

$$Y_{4} = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to WW^{*})$$

$\Delta\Gamma_H/\Gamma_H$	250 GeV	+ 500 GeV
Baseline	11%	5.0%
LumiUP	5.4%	2.5%

WW-fusion production is as important as ZH production.
eventually limited by 2ΔY₁⊕ΔY₄, since statistically Y₂, Y₃ better than Y₁ and 2Y₄.

Staged Running (an example)

(recoil mass at higher energy not used)

summary

- deviations on HWW coupling and Higgs total width are strong signal to new physics, and can be measured model independently at ILC.
- to get HWW coupling as good as HZZ coupling, going up to 500 GeV is essential for fully employing WW-fusion channel, where both HWW coupling and Higgs total width can be significantly improved by a factor of ~4.

backup

 $e^+ + e^- \rightarrow \nu \bar{\nu} H \rightarrow \nu \bar{\nu} (WW^*) \rightarrow \nu \bar{\nu} q q q q$ @ 500 GeV

looks working, better resolution than kt algorithm

$$d_{ij} = \min(p_{ti}^2, p_{tj}^2) \,\Delta R_{ij}^2 / R^2$$

$$\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

overlaid particles usually very forward —> large y —> far from physics jet

overlay is removed efficiently

23