

UV complete theory of SUSY radiative seesaw scenarios

Tetsuo Shindou (Kogakuin University)
S. Kanemura, T.S, and T. Yamada, PRD86,055023
S. Kanemura, E. Senaha, T.S,T. Yamada,JHEP1305,066
S. Kanemura, N. Machida, T.S, T. Yamada, arXiv:1309.3207 14/11/2013 LCWS2013 @ Univ. of Tokyo Japan

Physics beyond the SM

Discovery of a Higgs boson\&measurements of properties

Essence of the electroweak symmetry breaking
New Physics at TeV scale
It's quite interesting,
if the NP provides solutions on the problems in the SM:

- Baryon asymmetry of the Universe
- Origin of the neutrino mass
- DM candidate

Electroweak Baryogenesis

Electroweak Baryogenesis \longleftrightarrow essence of EWSB

1st order electroweak transition

$$
V_{\mathrm{eff}}(v ; T)-V_{\mathrm{eff}}(0, T)
$$

 transition is necessary

To get strong 1st order EWT

Strong 1st order EWPT requires extension of the SM In the SM, the condition is satisfied only when $m_{h}<50 \mathrm{GeV}$ (φ_{c} / T_{c} is suppressed by m_{h}) conflict with LHC data

Extra boson loop can enhance φ_{c} / T_{c}
Extended Higgs sector!
e.g. 2HDM

$$
\mathcal{L}=\frac{\lambda_{i}}{2} h^{2}\left|\Phi_{i}\right|^{2}
$$

$$
m_{\Phi}^{2}(\varphi)=M^{2}+\lambda_{i} \varphi^{2}
$$

Extra Higgs bosons as $\mathrm{H}, \mathrm{A} \mathrm{H}^{ \pm}$

Contour plot of $\Delta \lambda_{\text {hhh }} / \lambda_{\text {hhh }}$ and $\varphi_{C} T_{c}$ in the $m_{\Phi}-\mathrm{M}$ plane

In SUSY case

In the MSSM, there is no such a large coupling with SM-like Higgs

(The light stop scenario is the only possibility but it's almost dead)
The simplest example of strong but light Higgs scenario is SUSY 4HD+charged singlets $\phi_{\mathrm{c}} / T_{\mathrm{c}}>1$ with $\mathrm{m}_{\mathrm{h}}=126 \mathrm{GeV}$
S.Kanemura, E. Senaha, T.S, PLB706,40

Fundamental theory?

- Electroweak baryogenesis
- Enhancement of EWPT by bosonic loop requires strong Higgs coupling(>1) but light(125 GeV) Higgs
- What is the fundamental theory of such models?
- Large coupling constant \rightarrow Landau pole (cutoff)
- What is the origin of Higgs force?

Fundamental theory?

- Electroweak baryogenesis
- Enhancement of EWPT by bosonic loop requires strong Higgs coupling(>1) but light(125GeV) Higgs
- What is the fundamental theory of such models?
- Large coupling constan Our expectation:
- What is the origin of Hig

SUSY SU(2)н model

In SUSY QCD:
 $\mathrm{N}_{\mathrm{f}}=\mathrm{N}_{\mathrm{c}}+1 \Rightarrow$ confinement

See e.g. Intriligator, Seiberg, hep-th/9509006 Let us consider the simplest case $\left(\mathrm{N}_{\mathrm{c}}=2 \& \mathrm{~N}_{\mathrm{f}}=3\right)$
SUSY SU(2) $\mathrm{H} \times \mathrm{SU}(2)\llcorner\times U(1)$ Y s.Kanemura, T.S, and T. Yamada, PRD86,055023 It's asymptotic free! It's the same setup as the minimal SUSY fat Higgs R Harnik, et al., PRD70, 015002

Fields	$\mathrm{SU}(2)_{L}$	$\mathrm{U}(1)_{Y}$
$\left(\begin{array}{l}T_{1} \\ T_{2}\end{array}\right.$	2	0
T_{3}	1	$+1 / 2$
T_{4}	1	$-1 / 2$
T_{5}	1	$+1 / 2$
T_{6}	1	$-1 / 2$

cf. In the minimal SUSY fat Higgs, only H_{u}, H_{d}, and N are made light
(The effective theory is "minimal")

Effective theory of $\operatorname{SU}(2)_{\text {н }}$ model

S.Kanemura,E. Senaha, T.S,T.Yamada,JHEP1305,066

$$
\begin{aligned}
& W=-\mu \overleftarrow{H_{u} H_{d}-\mu_{\Phi} \Phi_{u} \Phi_{d}-\mu_{\Omega}\left(\Omega_{+} \Omega_{-}-\zeta \eta\right)} \text { MSSM-like Higgs doublets } \\
&+\hat{\lambda}\left\{H_{d} \Phi_{u} \zeta+H_{u} \Phi_{d} \eta-H_{u} \Phi_{u} \Omega_{-}-H_{d} \Phi_{d} \Omega_{+}\right\} \\
& \hat{\lambda}\left(\Lambda_{H}\right) \simeq 4 \pi \text { (Naive dimensional analysis) }
\end{aligned}
$$

1st order EWPT

Benchmark:

$$
\begin{aligned}
& \tan \beta=15, m_{H^{+}}=350 \mathrm{GeV}, \mu=200 \mathrm{GeV}, M_{\tilde{t}}=M_{\tilde{q}}=2000 \mathrm{GeV} \\
& \bar{m}_{\Omega^{+}}^{2}=\bar{m}_{\Phi_{d}}^{2}=\bar{m}_{\zeta}^{2}=(1500 \mathrm{GeV})^{2}, \bar{m}_{\eta}^{2}=(2000 \mathrm{GeV})^{2}, \mu_{\Phi}=\mu_{\Omega}=550 \mathrm{GeV} \\
& m_{0}^{2} \equiv \bar{m}_{\Phi_{u}}^{2}=\bar{m}_{\Omega_{-}}^{2}(\text { Scanned }) \\
& \left(m_{\phi}^{2}=\bar{m}_{\phi}^{2}+c_{\phi} \lambda^{2} v^{2}\right)
\end{aligned}
$$

$\varphi_{c} / T_{c}>1$ can be satisfied!!

Lightest Z_{2} odd masses

1st order EWPT

Contribution to hyp

S.Kanemura,E. Senaha, T.S, T.Yamada,JHEP1305,066

$\sim 20 \%$ deviation is possible in the region of $v_{c} / T_{c}>1$

hhh coupling

$\sim 20 \%$ deviation is possible in the region of $v_{c} / T_{c}>1$

How about neutrino mass?

Origin of the neutrino mass at TeV scale Alternative to the well-known seesaw model: Idea of loop induced neutrino mass
Especially, radiative seesaw scenarios are interesting
Loop diagram with RH neutrinos give tiny neutrino mass

$$
\left(Z_{2}-o d d\right) \longleftarrow \text { To avoid tree level contribution }
$$

Some new scalars are introduced!

Lightest Z_{2}-odd neutral particle can be a DM

AKS model

:Āōk̄i-K̄ānēmürä-S̄ēto mōdē
Aoki, Kanemura, Seto, PRL102, 051805
($2 \mathrm{HD}+\mathrm{Z}_{2}$-odd charged and neutral singlet+Z2-odd RHN)

As a phenomenological model, this is quite interesting But ...
Large couplings \longrightarrow Landau pole at low energy scale Many extra scalars \longrightarrow It seems artificial What is the fundamental theory of this model?

For radiative seesaw

S.Kanemura, N. Machida, T.S, T.Yamada, arXiv:1309.3207

Fields	$\mathrm{SU}(2)_{L}$	$\mathrm{U}(1)_{Y}$	Z_{2}
$\binom{T_{1}}{T_{2}}$	2	0	+
T_{3}	1	$+1 / 2$	+
T_{4}	1	$-1 / 2$	+
T_{5}	1	$+1 / 2$	-
T_{6}	1	$-1 / 2$	-

We can use the $\mathrm{SU}(2)_{\mathrm{H}}$ model

Field	$\mathrm{SU}(2)_{L}$	$\mathrm{U}(1)_{Y}$	Z_{2}
$H_{u}=\binom{H_{13}}{H_{23}}$	2	$+1 / 2$	+
$H_{d}=\binom{H_{14}}{H_{24}}$	2	$-1 / 2$	+
$N=H_{56}, N_{\Phi}=H_{34}, N_{\Omega}=H_{12}$	1	0	+
$\Phi_{u}=\binom{H_{15}}{H_{25}}$	2	$+1 / 2$	-
$\Phi_{d}=\binom{H_{16}}{H_{26}}$	2	$-1 / 2$	-
$\Omega_{+}=H_{35}$	1	+1	-
$\Omega_{-}=H_{46}$	1	-1	-
$\zeta=H_{36}, \xi=H_{45}$	1	0	-

In the low energy effective theory,

$$
W_{N}=\left(y_{N}\right)_{i} N_{i}^{c} L_{j} \Phi_{u}+\left(h_{N}\right)_{i j} N_{i}^{c} E_{j}^{c} \Omega^{-}+\frac{M_{i}}{2} N_{i}^{c} N_{i}^{c}
$$

Neutrino mass generation

S.Kanemura, N. Machida, T.S, T.Yamada,arXiv:1309.3207

Two different types of contributions are possible
1-loop
driven by y_{N}

It corresponds to SUSY Ma model

They correspond to SUSY AKS model

Comment on SUSY AKS

S.Kanemura, N. Machida, T.S, T.Yamada,arXiv:1309.3207
e.g. Āoki-Kanemura-Seto model Aoki, Kanemura, Seto, PRL102, 051805 ($2 \mathrm{HD}+\mathrm{Z}_{2}$-odd charged and neutral singlet+Z2-odd RHN)

In SUSY version, $\mathrm{H}_{\mathrm{u}}, \mathrm{H}_{\mathrm{d}}$ (MSSM-like Higgs)

$$
\begin{array}{cl}
\Omega^{+}, \Omega^{-} & \Phi u_{u}, \phi_{\mathrm{d}} \\
\zeta & \mathrm{~N}^{c}(\mathrm{RHN})
\end{array}
$$ fields are required

provides all the fields in the Higgs sector!!

Benchmark points

(A):1-loop dominant point (B):3-loop dominant point

Case	λ	$\tan \beta$	$m_{H^{ \pm}}$	$m_{\tilde{W}}$	μ	μ_{Φ}	μ_{Ω}
(A)	1.8	15	350 GeV	500 GeV	100 GeV	550 GeV	-550 GeV
(B)	1.8	30	350 GeV	500 GeV	100 GeV	550 GeV	-550 GeV

Case	$\bar{m}_{\Phi_{u}}^{2}$	$\bar{m}_{\Phi_{d}}^{2}$	$\bar{m}_{\Omega^{+}}^{2}$	$\bar{m}_{\Omega^{-}}^{2}$	\bar{m}_{ζ}^{2}	\bar{m}_{η}^{2}
(A)	$(100 \mathrm{GeV})^{2}$	$(1500 \mathrm{GeV})^{2}$	$(1500 \mathrm{GeV})^{2}$	$(100 \mathrm{GeV})^{2}$	$(1500 \mathrm{GeV})^{2}$	$(2000 \mathrm{GeV})^{2}$
(B)	$(1500 \mathrm{GeV})^{2}$	$(1500 \mathrm{GeV})^{2}$	$(1500 \mathrm{GeV})^{2}$	$(30 \mathrm{GeV})^{2}$	$(1410 \mathrm{GeV})^{2}$	$(30 \mathrm{GeV})^{2}$

Case	B_{ζ}^{2}	B_{η}^{2}	$m_{\zeta \eta}^{2}$
(A)	$(100 \mathrm{GeV})^{2}$	$(100 \mathrm{GeV})^{2}$	$(100 \mathrm{GeV})^{2}$
(B)	$(1400 \mathrm{GeV})^{2}$	0	0

Case	M_{1}	M_{2}	M_{3}	$m_{\tilde{\nu}_{R 1}}$	$m_{\tilde{\nu}_{R 2}}$	$m_{\tilde{\nu}_{R 3}}$	$m_{\tilde{e}_{R i}}(i=1,2,3)$
(A)	60 GeV	120 GeV	180 GeV	60 GeV	120 GeV	180 GeV	6000 GeV
(B)	100 GeV	2000 GeV	4000 GeV	100 GeV	4000 GeV	8000 GeV	6000 GeV

Case	$\left(y_{N}\right)_{i j}$	$\left(h_{N}\right)_{i j}$
(A)	$\left(\begin{array}{ccc}-0.45 & -0.44 & 0.51 \\ 0.23 & 0.23 & -0.26 \\ 0.19 & 1.37 & 1.37\end{array}\right) \times 10^{-4}$	
(B)	$\sim\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$\sim\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$\left(\begin{array}{ccc}0.001 & 0 & 0 \\ -0.0624+0.16 i & -0.0314-0.0016 i & -0.0022+0.000297 i \\ 0.902+2.46 i & 0.000681-0.00126 i & -0.000755-0.00161 i\end{array}\right)$		

Case	m_{1}	m_{2}	m_{3}	$\sin ^{2} \theta_{12}$	$\sin ^{2} 2 \theta_{23}$	$\left\|\sin \theta_{13}\right\|$
(A)	0.0 eV	0.0090 eV	0.050 eV	0.31	1.0	0.1
$(\mathrm{~B})$	0.0 eV	0.0089 eV	0.050 eV	0.31	1.0	0.1

The neutrino mass and angles are reproduced

Case	$\mathrm{B}(\mu \rightarrow e \gamma)$	$\mathrm{B}(\mu \rightarrow$ eee $)$
(A)	4.6×10^{-19}	7.2×10^{-21}
(B)	5.2×10^{-14}	4.7×10^{-13}

$\phi_{c} / T_{c}>1$ is realized!

Serious LFV constraints are also satisfied

Comments on direct detection

Our model is characterized by the Z_{2} odd sector

\underline{Z}_{2}-odd particle search is important colorless

Case (A): light inert doublet

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow H^{\prime} A^{\prime} \rightarrow Z H^{\prime} H^{\prime} \\
& e^{+} e^{-} \rightarrow H^{+\prime} H^{-1} \rightarrow W^{+} W^{-} H^{\prime} H^{\prime} @ \text { ILC }
\end{aligned}
$$

Mass determination can be done with a few GeV accuracy
M. Aoki, S. Kanemura and H. Yokoya, PLB725,302.

Case (B): Singlet-like charged particle Ω^{+}
$e^{+} e^{-} \rightarrow \Omega_{1}^{+} \Omega_{1}^{-}$
$e^{-} e^{-} \rightarrow \Omega_{1}^{-} \Omega_{1}^{-} \longleftarrow$ Strong evidence of the model Aoki\&Kanemura\&Seto, PRD80,033007; Aoki\&Kanemura, PLB689,28.

Light inert doublet @ ILC

M. Aoki, S. Kanemura and H. Yokoya, PLB725,302.

Light inert doublet @ ILC

M. Aoki, S. Kanemura and H. Yokoya, PLB725,302.

$$
e^{+} e^{-} \rightarrow H^{+\prime} H^{-\prime} \rightarrow W^{+} W^{-} H^{\prime} H^{\prime}
$$

The masses can be precisely determined

Singlet-like scalar @ ILC

Aoki\&Kanemura, PLB689,28.

$$
e^{+} e^{-} \rightarrow S^{+} S^{-} \rightarrow \tau^{+} \tau^{-}+\text {missing }
$$

A signal can be seen at the ILC@1TeV

Singlet-like scalar @ILC-e-e-

The signal is quite clear evidence of the Majorana nature and the scenario

Summary

- It is quite interesting, NP in the Higgs sector provides solutions for baryogenesis, neutrino mass, DM.
- Electroweak baryogenesis, radiative generation of neutrino mass,...
- It can be tested at collider experiments
- Many models have been considered but they have been developed purely phenomenologically
- We have succeeded to provide a candidate of fundamental theory of such models
- SUSY SU(2) ${ }_{\text {H }}$ with $N_{f}=3+Z_{\downarrow}$-odd RHN is attractive simple candidate

It provides new DM candidate

- It's very different from GUT beyond the grand desert Rich field will be there!

Back up

Top Yukawa coupling

Introducing several new fields ($\mathrm{SU}(2)_{\mathrm{H}}$ singlets) as
conformal

$$
\begin{aligned}
W_{f}= & M_{f}\left(\varphi_{u} \bar{\varphi}_{u}+\bar{\varphi}_{d} \varphi_{d}\right)+\bar{\varphi}_{d} T T_{4}+\bar{\varphi}_{u} T T_{3} \\
& +h_{u}^{i j} Q_{i} u_{j} \varphi_{u}+h_{d}^{i j} Q_{i} d_{j} \varphi_{d}+h_{e}^{i j} L_{i} e_{j} \varphi_{d}
\end{aligned} T=\binom{T_{1}}{T_{2}}
$$

Q,L,u,d,e: Matter fields in the SM
enhancement
$\varphi_{u, d}$ and $\bar{\varphi}_{u, d}$ are integrated out

$$
W=\frac{4 \pi}{M_{f}}\left\{h_{u}^{i j} Q_{i} u_{j}\left(T T_{3}\right)+h_{d} Q_{i} d_{j}\left(T T_{4}\right)+h_{e} L_{i} e_{j}\left(T T_{4}\right)\right\}
$$

Below \wedge_{H}

$$
\begin{aligned}
& \left(T T_{3}\right) \rightarrow \frac{\Lambda_{H}}{4 \pi} H_{u} \quad\left(T T_{4}\right) \rightarrow \frac{\Lambda_{H}}{4 \pi} H_{d} \\
& W=h_{u}^{i j} Q_{i} u_{j} H_{u}+h_{d}^{i j} Q_{i} d_{j} H_{d}+h_{e}^{i j} L_{i} e_{j} H_{d}
\end{aligned}
$$

EWBG in the SM

In the high temperature approximation,

$$
V(\varphi, T) \simeq D\left(T^{2}-T_{0}^{2}\right) \varphi^{2}-E T \varphi^{3}+\frac{\lambda_{T}}{4} \varphi^{4}+\cdots
$$

$$
\varphi_{c} / T_{c}=2 E / \lambda_{T_{c}} \quad 1 \text { st order PT is possible }
$$

$$
E=\frac{1}{12 \pi v^{3}}\left(6 m_{W}^{3}+3 m_{Z}^{3}\right)
$$ due to the cubic term

$\lambda_{T}=\frac{m_{h}^{2}}{2 v^{2}}+\log$ corrections

$$
\varphi_{c} / T_{c} \propto 1 / m_{h}^{2}
$$

Light Higgs is required !!

In SM, Higgs should be lighter than 50 GeV
excluded by NEW CP phases are also necessary for successful baryogenesis LEP data

Extension of the SM at TeV scale is necessary

It can be tested by experiments

- New bosonic loop contribution

Q Higher dim. term in the potential

EWBG in the MSSM

Lighter stop loop can contribute

$$
\varphi_{c} / T_{c}=2 E / \lambda_{T_{c}}>1
$$

$$
E \simeq \frac{1}{12 \pi v^{3}}\left(6 m_{W}^{3}+3 m_{Z}^{3}\right)+\frac{m_{t}^{3}}{2 \pi v^{3}}\left(1-\frac{\left|A_{t}+\mu \cot \beta\right|^{2}}{M_{\tilde{q}}^{2}}\right)
$$

where the maximal contribution case is considered;

$$
m_{\tilde{t}_{1}}^{2}(\varphi, \beta)=\left(M_{T_{R}}^{2}+\frac{y_{t}^{2} s_{\beta}^{2}}{2}\left(1-\frac{\left|A_{t}+\mu \cot \beta\right|^{2}}{M_{\tilde{q}^{2}}}\right) \varphi^{2}\right.
$$

For larger $M_{T R}$, the effect is smaller
Light stop is necessary \leftrightarrow No new coloured particles at LHC \cdots Even with such a maximal case, it's not easy to get $\varphi_{c} / T_{c}>1$

MSSM should be also modified at TeV scale for EWBG

What kind of modification?

 $\begin{aligned} & \text { Small } m_{h} \text { is } \\ & \text { preferable } \\ & \text { support }\end{aligned} m_{h}=126 \mathrm{GeV} @ 1$A Good point of MSSM : h^{4} coupling is from gauge coupling \rightarrow Light Higgs

Large bosonic loop contribution

A strong Higgs coupling with additional bosons ($\mathrm{h}-\Phi^{\prime \prime}-\Phi^{\prime \prime}$)
'Q Mass of ϕ^{\prime} ' is dominated by vev $m_{\Phi^{\prime}}^{2}=M^{2}+\lambda^{2} v^{2}$
A natural realization of "strong but light" in SUSY model:

MSSM Higgs $\quad Z_{2}$ odd new fields
$W=\lambda \Phi_{u, d} \Phi_{1}^{\prime} \Phi_{2}^{\prime} \longrightarrow \Delta V=|\lambda|^{2} h^{2} \varphi_{1,2}^{\prime \dagger} \varphi_{1,2}^{\prime}$
strong but light!

It provides strong coupling but m_{h} is kept small!

Tests of the scenario

Enhancement
of φ_{c} / T_{c} \uparrow
destructive

Ino loop

negative contribution

contribution to hhh coupling \leftarrow Linear Collider

Inert scalar mass: $m_{\Phi^{\prime}}^{2}=M^{\prime 2}+\lambda^{2} v^{2}$
Inert ino mass: $m_{\tilde{\Phi}^{\prime}}=\mu^{\prime}+\lambda v$
The loop contributions are significant when λv dominates the masses.
Z_{2} odd scalars as light as $\sim \lambda v$

Large μ^{\prime} and small $M^{\prime 2}$ provides large deviation in hhh and large φ_{c} / T_{c}

