

UV complete theory of SUSY radiative seesaw scenarios

Tetsuo Shindou (Kogakuin University) S. Kanemura, T.S, and T. Yamada, PRD86,055023 S. Kanemura, E. Senaha, T.S,T. Yamada, JHEP1305,066 S. Kanemura, N. Machida, T.S, T. Yamada, arXiv:1309.3207 14/11/2013 LCWS2013 @ Univ. of Tokyo Japan

Physics beyond the SM

Discovery of a Higgs boson&measurements of properties

Essence of the electroweak symmetry breaking

New Physics at TeV scale

It's quite interesting,
if the NP provides solutions on
the problems in the SM:
Baryon asymmetry of the Universe
Origin of the neutrino mass
DM candidate

Electroweak Baryogenesis

Electroweak Baryogenesis < essence of EWSB

To avoid too strong washout

The strong enough first order electroweak phase transition is necessary

1st order electroweak transition Sphaleron

10

$$V_{\text{eff}}(v;T) - V_{\text{eff}}(0,T)$$

$$T > T_c > 0$$

$$\varphi_c$$

Higgs potential@EW scale

To get strong 1st order EWT

Strong 1st order EWPT requires extension of the SM In the SM, the condition is satisfied only when $m_h < 50$ GeV $(\varphi_c/T_c \text{ is suppressed by } m_h)$ conflict with LHC data

Extra boson loop can enhance φ_c/T_c **Extended Higgs sector!** e.g. 2HDM $\mathcal{L} = \frac{\lambda_i}{2} h^2 |\Phi_i|^2$ $m_{\Phi}^2(\varphi) = M^2 + \lambda_i \varphi^2$ Extra Higgs bosons as H,A H[±]

In SUSY case

In the MSSM, there is no such a large coupling with SM-like Higgs

EW baryogenesis can be realized in a SUSY model @TeV

 $\lambda > 1.6$

Fundamental theory?

- Electroweak baryogenesis
 - Enhancement of EWPT by bosonic loop requires strong Higgs coupling(>1) but light(125GeV) Higgs
- What is the fundamental theory of such models?
 - Large coupling constant \rightarrow Landau pole (cutoff)
 - What is the origin of Higgs force?

Fundamental theory?

- Electroweak baryogenesis
 - Enhancement of EWPT by bosonic loop requires strong Higgs coupling(>1) but light(125GeV) Higgs
- What is the fundamental theory of such models?
 - Large coupling constan Our expectation:
 - What is the origin of Hig

SUSY SU(2)_H model

In SUSY QCD: $N_f = N_c + 1 \Rightarrow confinement$ See e.g. Intriligator, Seiberg, hep-th/9509006

Let us consider the simplest case (N_c=2&N_f=3)

SUSY SU(2)_H×SU(2)_L×U(1)_Y S.Kanemura, T.S, and T. Yamada, PRD86,055023 It's asymptotic free! It's the same setup as the minimal SUSY fat Higgs R Harnik, et al., PRD70, 015002

Below the confinement scale $\Lambda_H,$ the effective theory is described by $H_{ij}{\sim}T_iT_j$

cf. In the <u>minimal</u> SUSY fat Higgs, only H_u, H_d, and N are made light (The effective theory is "minimal")

it i fulling et al.	110,010002			
Field	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_{Y}$		
$H_u = \begin{pmatrix} H_{13} \\ H_{23} \end{pmatrix}$	2	+1/2		
$H_d = \begin{pmatrix} H_{14} \\ H_{24} \end{pmatrix}$	2	-1/2		
$N = H_{56}, N_{\Phi} = H_{34}, N_{\Omega} = H_{12}$	1	0		
$\Phi_u = \begin{pmatrix} H_{15} \\ H_{25} \end{pmatrix}$	2	+1/2		
$\Phi_d = \begin{pmatrix} H_{16} \\ H_{26} \end{pmatrix}$	2	-1/2		
$\Omega_+ = H_{35}$	1	+1		
$\Omega_{-} = H_{46}$	1	-1		
$\zeta = H_{36}, \xi = H_{45}$	1	0		

Effective theory of SU(2)_H model

S.Kanemura, E. Senaha, T.S, T.Yamada, JHEP1305,066

 $W = -\mu H_u H_d - \mu_{\Phi} \Phi_u \Phi_d - \mu_{\Omega} (\Omega_+ \Omega_- - \zeta \eta) \\ + \hat{\lambda} \{ H_d \Phi_u \zeta + H_u \Phi_d \eta - H_u \Phi_u \Omega_- - H_d \Phi_d \Omega_+ \} \\ \hat{\lambda} (\Lambda_H) \simeq 4\pi$ (Naive dimensional analysis)

1st order EWPT

1st order EWPT

Contribution to hyy

hhh coupling

~20% deviation is possible in the region of $v_c/T_c>1$

How about neutrino mass?

Origin of the neutrino mass at TeV scale Alternative to the well-known seesaw model: Idea of loop induced neutrino mass Especially, radiative seesaw scenarios are interesting Loop diagram with RH neutrinos give tiny neutrino mass (Z₂-odd) ← To avoid tree level contribution Some new scalars are introduced! L.M.Krauss, S.Nasri, M.Trodden, PRD67, 085002 inert doublet` ► E. Ma, PRD73,077301 $\overline{\nu_L} \ e_L e_R \ \nu_R \ \nu_R \ e_R e_L \nu_L$ ν_L ν_R ν_R ν_L ightest Z₂-odd neutral particle can be a DM

AKS model

For radiative seesaw

S.Kanemura, N. Machida, T.S, T.Yamada, arXiv:1309.3207

Fields	$\mathrm{SU}(2)_L$	$U(1)_Y$	Z_2	
$\left(\begin{array}{c} T_1 \\ T_2 \end{array} \right)$	2	0	+	
T_3	1	+1/2	+	
T_4	1	-1/2	+	
T_5	1	+1/2	-	
T_6	1	-1/2	-	

We can use the SU(2)_H model

Field	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	Z_2
$H_u = \begin{pmatrix} H_{13} \\ H_{23} \end{pmatrix}$	2	+1/2	+
$H_d = \begin{pmatrix} H_{14} \\ H_{24} \end{pmatrix}$	2	-1/2	+
$N = H_{56}, N_{\Phi} = H_{34}, N_{\Omega} = H_{12}$	1	0	+
$\Phi_u = \begin{pmatrix} H_{15} \\ H_{25} \end{pmatrix}$	2	+1/2	-
$\Phi_d = \begin{pmatrix} H_{16} \\ H_{26} \end{pmatrix}$	2	-1/2	-
$\Omega_+ = H_{35}$	1	+1	-
$\Omega_{-} = H_{46}$	1	-1	_
$\zeta = H_{36}, \xi = H_{45}$	1	0	_

Then, Z₂-odd RH neutrinos are introduced as SU(2)н singlet fields

In the low energy effective theory, $W_N = (y_N)_i N_i^c L_j \Phi_u + (h_N)_{ij} N_i^c E_j^c \Omega^- + \frac{M_i}{2} N_i^c N_i^c$

Neutrino mass generation

S.Kanemura, N. Machida, T.S, T.Yamada,arXiv:1309.3207 Two different types of contributions are possible

1-loop

driven by y_N

It corresponds to SUSY Ma model

Comment on SUSY AKS

S.Kanemura, N. Machida, T.S, T.Yamada, arXiv:1309.3207

Benchmark points

(A):1-loop dominant point(B):3-loop dominant point

Case	λ	an eta	n	$n_{H^{\pm}}$	$m_{ ilde W}$		μ		μ_{Φ}	ŀ	ıΩ			
(A)	1.8	15	35	$0 { m GeV}$	500G	eV 1	00GeV	/ 5	50GeV	-55	$0 { m GeV}$			
(B)	1.8	30	35	$0 { m GeV}$	500Ge	eV 1	00GeV	/ 5	50GeV	-55	$0 { m GeV}$			
Case		$\bar{m}_{\Phi_u}^2$		m	$\frac{2}{\Phi_d}$		$\bar{m}^2_{\Omega^+}$		\bar{m}_{Ω}^2	-	\bar{m}_{ζ}^2		\bar{m}_{η}^2]
(A)	(10	00GeV	$)^{2}$	(1500	$GeV)^2$	(15	00GeV	$(1)^{2}$	(100Ge	$(V)^2$	(1500	$GeV)^2$	(2000 GeV)	2
(B)	(15	00GeV	$(V)^{2}$	(1500	$GeV)^2$	(15	00GeV	$(7)^{2}$	(30Ge	$V)^2$	(1410	$GeV)^2$	$(30 \text{GeV})^2$	
Case		B_{ζ}^2		В	$\frac{2}{\eta}$	η	$m_{\zeta\eta}^2$							
(A)	(10	00GeV	$)^{2}$	(1000	${\rm GeV})^2$	(100)	$(GeV)^2$	2						
(B)	(14	00GeV	$(V)^{2}$	0)		0							
Case	Λ	M_1		M_2	M	3	$m_{\tilde{ u}_R}$	L	$m_{\tilde{ u}_{R2}}$		$m_{ ilde{ u}_{R3}}$	$m_{\tilde{e}_{Ri}}$	(i = 1, 2, 3)	
(A)	600	GeV	120)GeV	180G	eV	60Ge	V	120Ge	V 1	80GeV	6	$000 { m GeV}$	
(B)	100	GeV	200	$0 { m GeV}$	40000	deV	100Ge	eV	4000Ge	V 80)00GeV	/ 6	000 GeV	
Case				$(y_N)_{ij}$	i							()	$(h_N)_{ij}$	
(A)	$ \begin{pmatrix} -0.45 & -0.44 & 0.51 \\ 0.23 & 0.23 & -0.26 \\ 0.19 & 1.37 & 1.37 \end{pmatrix} \times 10^{-4} $)-4	$4 \qquad \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$								
(B)	$\sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$											0 -0.0022 + 0.00029' -0.000755 - 0.0016		

Case	m_1	m_2	m_3	$\sin^2 \theta_{12}$	$\sin^2 2\theta_{23}$	$ \sin\theta_{13} $
(A)	$0.0 \mathrm{eV}$	$0.0090 \mathrm{eV}$	$0.050 \mathrm{eV}$	0.31	1.0	0.1
(B)	$0.0 \mathrm{eV}$	$0.0089 \mathrm{eV}$	$0.050 \mathrm{eV}$	0.31	1.0	0.1

The neutrino mass and angles are reproduced

Case	$B(\mu \to e \gamma)$	$B(\mu \to eee)$
(A)	4.6×10^{-19}	7.2×10^{-21}
(B)	5.2×10^{-14}	4.7×10^{-13}

 $\phi_c/T_c>1$ is realized!

Serious LFV constraints are also satisfied

Comments on direct detection

Our model is characterized by the Z₂ odd sector Z₂-odd particle search is important Case (A): light inert doublet $e^+e^- \to H'A' \to ZH'H'$ @ILC $e^+e^- \rightarrow H^{+\prime}H^{-\prime} \rightarrow W^+W^-H^\prime H^\prime$ Mass determination can be done with a few GeV accuracy M. Aoki, S. Kanemura and H. Yokoya, PLB725,302. Case (B): Singlet-like charged particle Ω^+ $e^+e^- \to \Omega_1^+\Omega_1^$ $e^-e^- \rightarrow \Omega_1^- \Omega_1^- \leftarrow$ Strong evidence of the model Aoki&Kanemura&Seto, PRD80,033007; Aoki&Kanemura, PLB689,28.

Light inert doublet @ ILC

M. Aoki, S. Kanemura and H. Yokoya, PLB725,302.

Light inert doublet @ ILC

Number of Events / (5 GeV)

GeV)

Events / (2

ď

Number

Singlet-like scalar @ ILC

Aoki&Kanemura, PLB689,28.

 $e^+e^- \to S^+S^- \to \tau^+\tau^- + \text{missing}$

A signal can be seen at the ILC@1TeV

Singlet-like scalar @ILC-e⁻e⁻

the Majorana nature and the scenario

Summary

- It is quite interesting, NP in the Higgs sector provides solutions for baryogenesis, neutrino mass, DM.
 - Electroweak baryogenesis, radiative generation of neutrino mass,...
 - It can be tested at collider experiments
 - Many models have been considered but they have been developed purely phenomenologically
 - We have succeeded to provide a candidate of fundamental theory of such models
 - SUSY SU(2)_H with N_f=3 + Z₂-odd RHN is attractive simple candidate
 It provides new DM candidate
 - It's very different from GUT beyond the grand desert Rich field will be there!

Back up

Top Yukawa coupling

Introducing several new fields (SU(2)_H singlets) as

EWBG in the SM In the high temperature approximation, $V(\varphi, T) \simeq D(T^2 - T_0^2)\varphi^2 - ET\varphi^3 + \frac{\lambda_T}{4}\varphi^4 + \cdots$ $\varphi_c/T_c = 2E/\lambda_{T_c}$ 1st order PT is possible due to the cubic term $E = \frac{1}{12\pi v^3} (6m_W^3 + 3m_Z^3)$ $\rightarrow \varphi_c/T_c \propto 1/m_h^2$ $\lambda_T = \frac{m_h^2}{2v^2} + \log \text{ corrections}$ Light Higgs is required !! In SM, Higgs should be lighter than 50GeV excluded by NEW CP phases are also necessary for successful baryogenesis LEP data Extension of the SM at TeV scale is necessary New bosonic loop contribution It can be tested by Higher dim. term in the potential experiments

EWBG in the MSSM Carena et al.,PLB380,81;...

Lighter stop loop can contribute enhance

large top Yukawa coupling $E \simeq \frac{1}{12\pi v^3} (6m_W^3 + 3m_Z^3) + \frac{m_t^3}{2\pi v^3} \left(1 - \frac{|A_t + \mu \cot \beta|^2}{M_{\tilde{c}}^2} \right)^{3/2}$

where the maximal contribution case is considered;

 $m_{\tilde{t}_{1}}^{2}(\varphi,\beta) = M_{T_{R}}^{2} + \frac{y_{t}^{2}s_{\beta}^{2}}{2} \left(1 - \frac{|A_{t} + \mu \cot \beta|^{2}}{M_{\tilde{q}^{2}}}\right)\varphi^{2}$ **o** For larger M_{TR}, the effect is smaller

Light stop is necessary \leftrightarrow No new coloured particles at LHC \cdots

Even with such a maximal case, it's not easy to get φ_c/T_c >1 Carena et al.,NPB812,243; Funakubo,Senaha,PRD79,115024

MSSM should be also modified at TeV scale for EWBG

Tests of the scenario

