LCTPC: Towards a TPC for ILC

Astrid Münnich

LCWS 2013, Tokyo, 13.11.2013

Overview

- The Collaboration
- The Large Prototype
 - New Endplate
 - New Field Cage
- MPGD Readout Modules
- Ion Back Flow
- Momentum Resolution
- Open Topics
- The case for a TPC at ILD

LCTPC - Collaboration

31 Institutes from 12 countries have signed MoA

13 institutes have an observer status R&D in 3 phases:

Demonstration Phase

Test feasibility with small scale detectors at individual labs

Onsolidation Phase

A medium size prototype was built to compare results and study integration issues

Design Phase Design of final detector

The Large Prototype

Large Prototype has been built to compare different detector readouts under identical conditions and to address integration issues

LP field cage parameters:

- L = 57 cm
- D = 72 cm
- up to 25 kV \Rightarrow E \approx 350 V/cm
- made of composite materials ⇒ 1.21 % X₀

Modular endplate

- 7 module windows
- ullet pprox 22 imes 17 cm²

Astrid Münnich (DESY) LCTPC: Towards a TPC for ILC

New Field Cage

Production at DESY, gain experience in handling materials and building large mechanical structure with high precision

Main Goals:

- New fieldcage with better precision
- Investigate better materials
- Improve other details, e.g. HV distribution

New Endplate

Goal: Total material budget for endplate less than 25% X_0 , including modules and electronics

Solution: Only the "strut" space-frame design can fulfill material budget and rigidity requirements at the same time

Deflection studies: measured: 27 $\mu m/100$ N, calculated with FEA: 23 $\mu m/100$ N

After the initial stage of R&D with many small TPC prototypes, we have four options of MPGD being tested at the Large Prototype TPC (LP)

- Multilayer **GEM** with the standard **pads** to readout the signal charges spread on the pad plane by the diffusion.
- O MicroMegas with resistive-anode pads to spread the very narrow charge on the pad plane.
- Multilayer GEM with pixel readout. The pixel readout can help to cope with high occupancy.
- MicroMegas mesh with pixel readout detecting individual primary electrons with close to 100% efficiency. (There are a lot of applications of different purposes for this microscopic imaging capability.)

GEMs with Pads

Asian GEM module:

- 2 GEMs, 100 μm thick, without side support
- $\bullet~1.2~\times~5.4~mm^2$ pads, 28 pad rows

DESY GEM module:

- Triple CERN GEM with thin ceramic frame
- $\bullet~1.26~\times~5.85~\text{mm}^2$ pads, 28 rows

More details by Yukihiro Kato "Activity report of ILD-TPC Asia group"

and Astrid Münnich "Performance of DESY GEM Module in Testbeam Measurements"

ALTRO readout electronics \approx 10000 channels

Next step: SALTRO (improved integration)

MicroMegas with Pads

Compact T2K electronics mounted directly on the back side of each MicroMegas module

- 24 rows with 72 pads
- 1728 pads per module
- Resistive foil to spread charge

More details by Paul Colas "Recent results from test bench and beam tests of Micromegas TPC modules"

Fully equipped endplate with 7 modules

with 12k channels

Pixel Readout

Bump bond pads for Si-pixel detectors serve as charge collection pads

2 Octoboards with bare Timepix chips:

256 \times 256 pixel of size 55 \times 55 μm^2 Each pixel can be set to:

- Hit counting
- Charge measurement
- Time measurement

Module Performance

All modules observe field distortions at the borders: GEMs (DESY)

MicroMegas

Current Topics

- Field distortions:
 - · Improve module designs to limit distortion at the borders
 - Apply corrections for electric and magnetic field distortions
 - Needs field maps and dedicated software
- Ion back flow:
 - Study intrinsic suppression of ion back flow inside amplification structure
 - Design and test gating schemes
 - · Evaluate effect of remaining ions on field homogeneity
- External reference for momentum resolution
 - Several layers of silicon detectors between the magnet and the TPC
 - Alignment of the two systems
- Electronics development
- Cooling system (CO₂ system close to being installed)
- Endplate integration
- Calibration: drift velocity, temperature, gain
- Software development

Ion Back Flow: Principle

- After each bunch train, a disk of positively charged ions from the amplification stage drifts back into the TPC volume
- Due to the very slow drift of ions up to three disks simultaneously in the gas volume of the ILD TPC \rightarrow field distortions
- With adjusted GEM settings, the ion back flow can be minimized, but not to zero
- Gating possibilities: wires, mesh, GEMs, ...?

Ion Back Flow: Measurements and Optimization

Setup to measure currents:

- Optimize the GEM setting for minimal ion back flow
- Compare results with Garfield simulation (ongoing)

Both settings have the same gain.

Ion Back Flow: Calculation

- The radial profile of the disk is dominated by machine-induced background during a bunch train
- Assumption: ion feed back factor from the amplification of 1 with respect to the primary ion charge
- Calculation of the expected distortion when electron passes through ion disk
 - \Rightarrow Maximum of $\approx 20~\mu m$ per disk
- \bullet Results in up to 60 μm distortion

\Rightarrow Gating needed

- Decide if wire, mesh or GEM gate
- Modules will be equipped with gates

Details on gates Yukihiro Kato "Activity report of ILD-TPC Asia group"

Motivation:

- Necessary for momentum resolution to unfold beam spread and multiple scattering in magnet from measured distribution
- Helpful for unbiased resolution and distortion evaluation

Specification:

- Required spatial resolution per point < 10 μm
- Sensitive area $\sim 5 \times 10 \ \text{cm}^2$
- Readout needs to be synchronized with TPC DAQ
- Tight spatial constraints: \sim 4 cm between TPC and magnet

Momentum Resolution with Testbeam Setup

- Measure the curvature of the track
- Distribution is dominated by beam spread and multiple scattering in magnet
- We need a value to compare it with to evaluate momentum resolution

Without an external reference a reference track has to be created from the data itself.

 \rightarrow Prone to bias, reduces the number of points that can be used for the measurement by at least a factor of 2. \rightarrow Resolution of TPC not sufficient to prove momentum resolution with the required precision (10⁻⁴ /GeV).

The next few years:

Before entering the engineering design of ILD TPC, we still need to study the following issues:

- Ion gate: the most urgent issue
- Some issues with MPGD technologies and MPGD modules
- Iccal distortions of MPGD modules
- Demonstration of power pulsing (with the SALTRO16 and future electronics)
- **O** Cooling of readout electronics and temperature control of TPC
- Performance of MPGD TPC in 3.5T magnetic field

The case for a TPC at ILD

The standard arguments:

- Material budget
- \bullet Very good pattern recognition \rightarrow perfect for Particle Flow
 - Large number of 3D points
 - Reconstruction of kinks, non-pointing tracks
 - High tracking efficiency
 - Background suppression
- dE/dx

What about the SET? Does the TPC need it?

- Correction of distortion
- Alignment, calibration
- Time stamping
- \rightarrow A task for the detector optimization group

Which physics analysis really uses specific advantages of the TPC?

 \rightarrow Current benchmarks do not challenge the TPC!

A Word on Material Budget

Not only the amount of material is important, but also its distance from the calorimeter!

 \rightarrow The closer to the calorimeter the better for jet energy resolution

ILD

A Word on Material Budget

Not only the amount of material is important, but also its distance from the calorimeter!

 \rightarrow The closer to the calorimeter the better for jet energy resolution

ILD

ILD, $\theta = 26^{\circ}$

Not only the amount of material is important, but also its distance from the calorimeter!

 \rightarrow The closer to the calorimeter the better for jet energy resolution

- BSM after LHC: small mass differences \rightarrow soft tracks, exclusive decays
- SM: multi-jet final states: 6,8 or 10 jets
 - \rightarrow PFA performance limited by jet-finding
 - \rightarrow exclusive decay chain reconstruction

Reconstruction of kinks and non-pointing tracks:

- Improves vertex information
- Allows to study decay of resonances, e.g. Λ_b
- GMSB \rightarrow up to 1m decay length

Particle ID with dE/dx

- dE/dx not implemented in simulation and therefore not exploited in physics studies
- Mass information for track fit is important especially for low momenta where dE/dx is powerful

 \rightarrow requires input from LCTPC to incorporate dE/dx information in the full detector simulation as we have it in our detailed simulations in MarlinTPC \rightarrow requires collaboration with analysis groups to find right benchmarks

Examples from ALEPH:

- Identification of low momentum electrons, separation form other charged particles e.g. pions
- Separate protons from anti-protons
- Identification of heavy charged particles

Status:

- MPGD technologies established
- First integration tests of modules in the LP successful
- Single point resolution obtained

Things we still need to do:

- $\bullet\,$ Demonstrate momentum resolution \rightarrow external reference needed
- Understand, minimize and correct field distortions
- $\bullet\,$ Limit ion back flow $\rightarrow\,$ design a gating scheme
- Study dE/dx
- Design and build next iteration of field cage, endplate and cathode
- Design and build next generation of electronics

Prove the advantages of the TPC all the way to the physics analysis!

BACKUP

Backup: Ion Back Flow

