Reconstructing SUSY Contribution to Muon g-2 at ILC

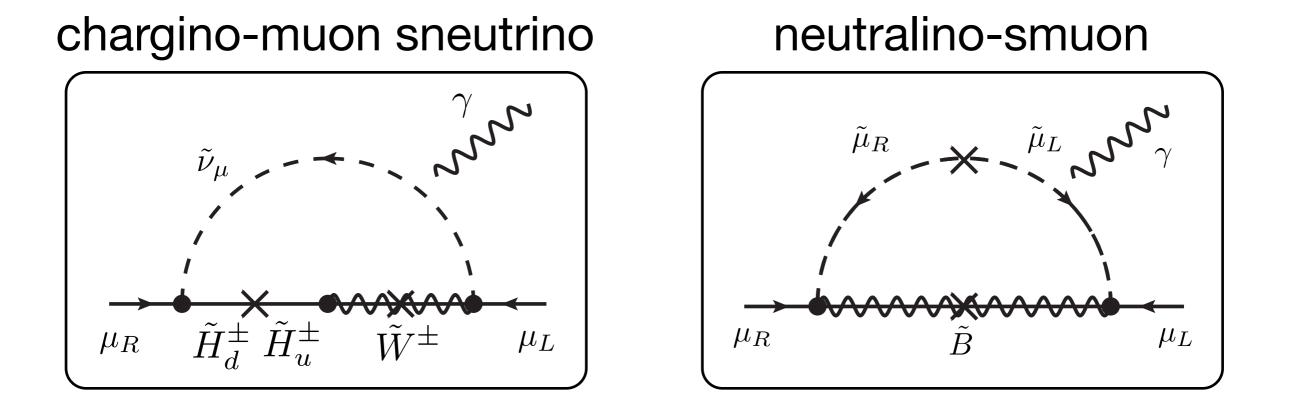
Motoi Endo (Tokyo)

ME, Hamaguchi, Iwamoto, Kitahara, Moroi. 1310.4496 [hep-ph]

LCWS13, 11-15 November 2013, Tokyo

Status of Muon g-2

Precise result from Brookhaven E821 experiment Dedicated studies on standard model prediction


[Hagiwara,Liao,Martin,Nomura,Teubner;Davier,Hoecker,Malaescu,Zhang]

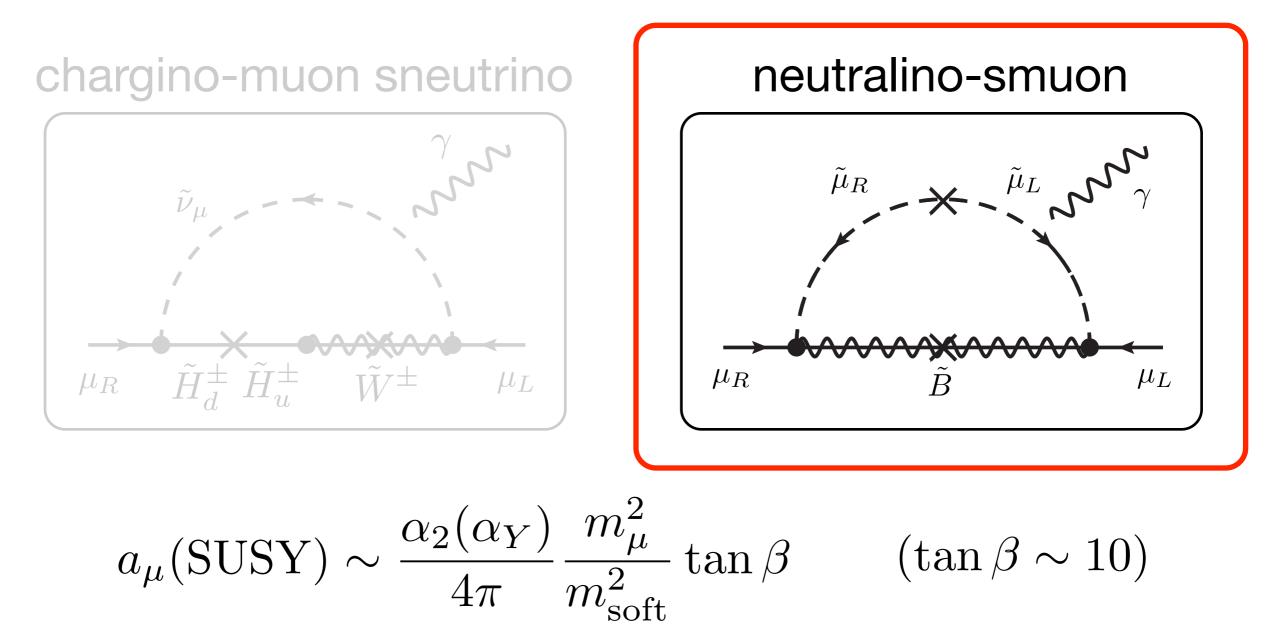
$$a_{\mu}^{(\exp)} - a_{\mu}^{(SM)} = \begin{cases} (26.1 \pm 8.0) \times 10^{-10} \\ (28.7 \pm 8.0) \times 10^{-10} \end{cases}$$

> 30 deviation

(possibly) a signal of new physics

c.f. Electroweak: $a_{\mu}^{(EW)} = (15.4 \pm 0.1) \times 10^{-10}$

SUSY Solution



$$a_{\mu}(\text{SUSY}) \sim \frac{\alpha_2(\alpha_Y)}{4\pi} \frac{m_{\mu}^2}{m_{\text{soft}}^2} \tan\beta \qquad (\tan\beta \sim 10)$$

 \rightarrow Enhanced by tan β

Question: How to test SUSY solution?

SUSY Solution

 \rightarrow Enhanced by tan β

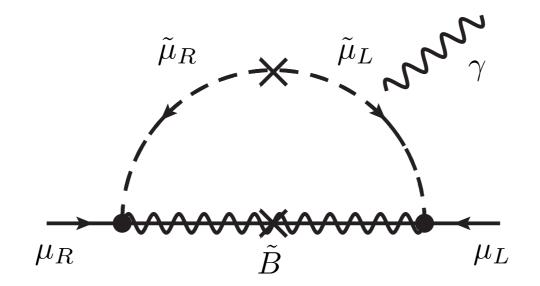
Question: How to test SUSY solution?

Test of SUSY Solution

Stage 1

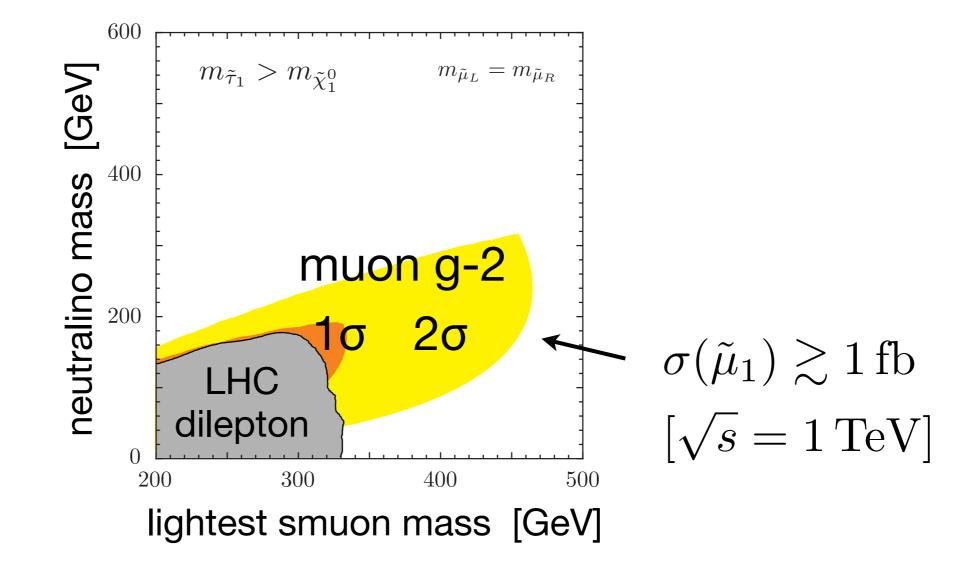
discovery of SUSY particles necessary for SUSY contribution to muon g-2

Stage 2


reconstruct SUSY contribution to muon g-2 by information available at colliders (ILC)

Neutralino Contribution

Contribution becomes sizable


✓ Light: left- and right-handed smuons, Bino
 ✓ large smuon LR mixing parameter (∝ μ tanβ)
 ▶ too large LR mixing spoils vacuum stability

Upper bounds on masses of SUSY particles

Mass Region

(Lightest) smuon and Bino are within kinematical reach of ILC at $\sqrt{s}=1\,{
m TeV}$ [Endo,Hamaguchi,Kitahara,Yoshinaga]

ILC can probe neutralino contribution to muon g-2

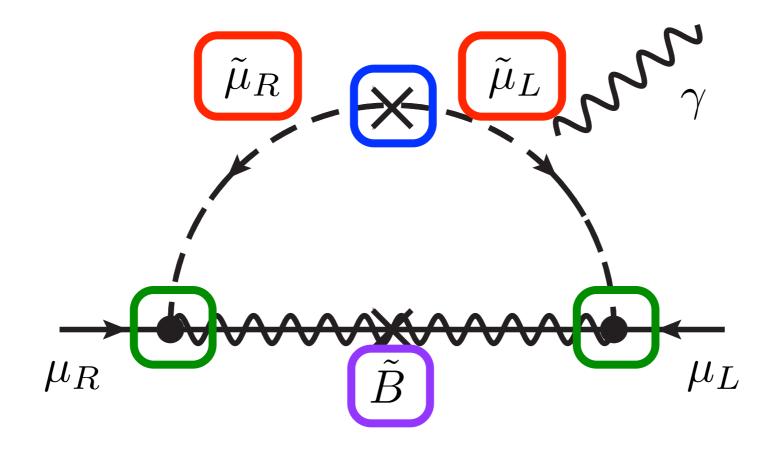
Test of SUSY Solution


Stage 1

discovery of SUSY particles necessary for SUSY contribution to muon g-2

→ ILC can probe neutralino contribution

Stage 2


reconstruct SUSY contribution to muon g-2 by information available at colliders (ILC)

It is possible to reconstruct at ILC under some conditions

Muon g-2 parameters

$$m_{\tilde{\mu}1}, \ m_{\tilde{\mu}2}, \ m_{\tilde{\mu}LR}^2, \ m_{\tilde{\chi}_1^0}^2, \ \tilde{g}_{1,L}^{(\text{eff})}, \ \tilde{g}_{1,R}^{(\text{eff})}$$

Muon g-2 parameters

$$m_{\tilde{\mu}1}, \ m_{\tilde{\mu}2}, \ m_{\tilde{\mu}LR}^2, \ m_{\tilde{\chi}_1^0}^2, \ \tilde{g}_{1,L}^{(\text{eff})}, \ \tilde{g}_{1,R}^{(\text{eff})}$$

Reconstruct neutralino contribution:

$$a_{\mu} = \frac{1}{16\pi^2} \frac{m_{\mu}^2}{m_{\tilde{\mu}}^2} \left[-\frac{1}{12} \left[(\hat{N}_L^{\mu})^2 + (\hat{N}_R^{\mu})^2 \right] F_1^N(x) - \frac{m_{\tilde{\chi}_1^0}}{3m_{\mu}} \hat{N}_L^{\mu} \hat{N}_R^{\mu} F_2^N(x) \right]$$
$$(\hat{N}_L^{\mu})_i = \frac{1}{\sqrt{2}} \tilde{g}_{1,L}^{(\text{eff})}(U_{\tilde{\mu}})_{iL}, \quad (\hat{N}_R^{\mu})_i = -\sqrt{2} \tilde{g}_{1,R}^{(\text{eff})}(U_{\tilde{\mu}})_{iR},$$

* Winos and Higgsinos are decoupled

Parameter	Process	Result
$m_{ ilde{\mu}1},\ m_{ ilde{\mu}2},\ m_{ ilde{\chi}_1^0}$		
$m_{ ilde{\mu}LR}^2$		
$ ilde{g}_{1,L}^{(ext{eff})}, \; ilde{g}_{1,R}^{(ext{eff})}$		

Setup

Sample point

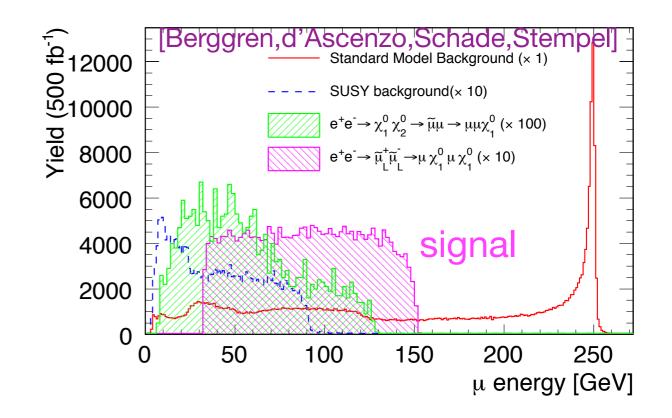
Parameters	$m_{\tilde{\ell}1}$	$m_{\tilde{\ell}2}$	$m_{ ilde{ au}1}$	$m_{ ilde{ au}2}$	$m_{ ilde{\chi}_1^0}$	$\sin heta_{ ilde{\mu}}$	$\sin \theta_{ ilde{ au}}$	$a_{\mu}^{(\mathrm{ILC})}$
Values	126	200	108	210	90	0.027	0.36	2.6×10^{-9}

$$(\tilde{\ell} = \tilde{e}, \, \tilde{\mu})$$

* other SUSY particles [Wino, Higgsino, colored] are decoupled.

- All of selectrons, smuons and staus are within kinematical reach of ILC at $\sqrt{s}=500\,{\rm GeV}$
- Close to SPS1a('): [left-handed sleptons are lighter]
 avoid LHC/LEP limits
 - previous studies of ILC can be applied

Mass Measurement


Smuon and neutralino masses are measured precisely by studying endpoints or by threshold scans

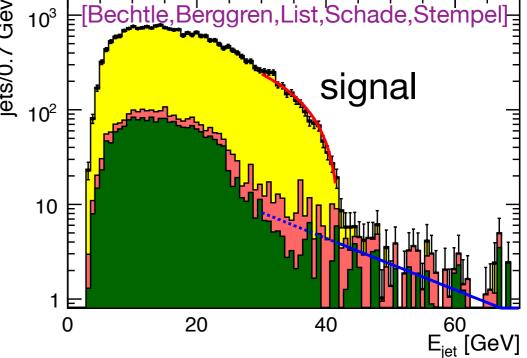
$$e^+e^- \to \tilde{\mu}^+\tilde{\mu}^-, \quad e^+e^- \to \tilde{e}^+\tilde{e}^-$$

Previous studies: SPS1a('), $\sqrt{s} = 400, 500 \,\text{GeV}, \ \mathcal{L} = 200-500 \,\text{fb}^{-1}$

ILC can provide

$$\begin{cases} \delta m_{\tilde{\mu}1} \sim 200 \text{ MeV} \\ \delta m_{\tilde{\mu}2} \sim 200 \text{ MeV} \\ \delta m_{\tilde{\chi}_1^0} \sim 100 \text{ MeV} \end{cases}$$

Parameter	Process	Result
$m_{ ilde{\mu}1},\ m_{ ilde{\mu}2},\ m_{ ilde{\chi}_1^0}$	$e^+e^- \rightarrow \tilde{\ell}^+\tilde{\ell}^-$ $(\tilde{\ell} = \tilde{e}, \tilde{\mu})$	very precise
$m_{ ilde{\mu}LR}^2$	too small to measure directly	
$ ilde{g}_{1,L}^{(ext{eff})}, \; ilde{g}_{1,R}^{(ext{eff})}$		

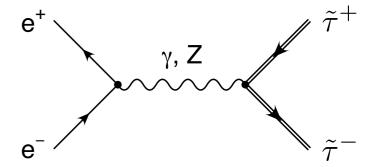

Smuon LR Mixing

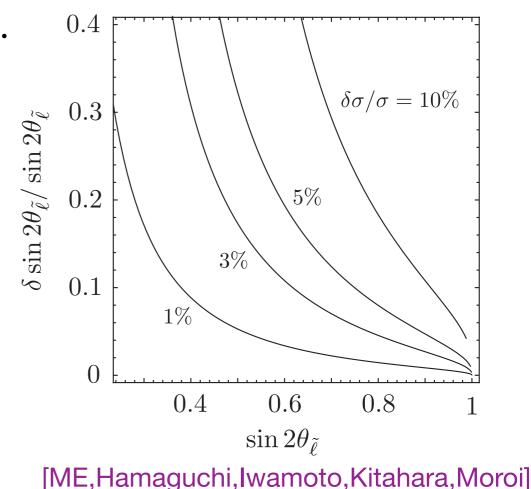
smuon LR mixing parameter is measured by the relation:

$$m_{\tilde{\mu}LR}^2 = \frac{m_{\mu}}{m_{\tau}} m_{\tilde{\tau}LR}^2, \quad m_{\tilde{\tau}LR}^2 = \frac{1}{2} (m_{\tilde{\tau}1}^2 - m_{\tilde{\tau}2}^2) \sin 2\theta_{\tilde{\tau}}$$

stau masses: endpoint of tau (-jet) energy

Based on detailed study at SPS1a' with $\sqrt{s} = 500 \,\mathrm{GeV}, \ \mathcal{L} = 500 \,\mathrm{fb}^{-1}$


Smuon LR Mixing contd.


stau mixing angle: stau production cross section

Cross section depends on the angle via s-channel Z exchange

$$\sigma(e^+e^- \to \tilde{\tau}_1\tilde{\tau}_1^*) = \alpha + \beta \cos 2\theta_{\tilde{\tau}} + \cdots$$

$$\gamma \quad \text{Z-exchange}$$

Mixing angle is determined, once the cross section and the model point are given.

Smuon LR Mixing contd.

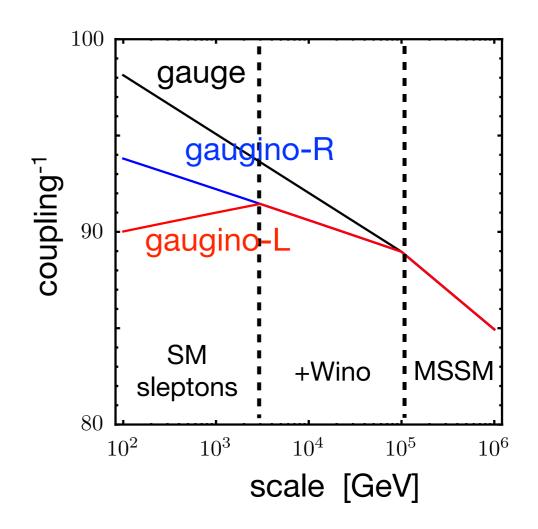
stau mixing angle: stau production cross section

Based on detailed study at SPS1a' w/. $\sqrt{s} = 500 \,\text{GeV}, \ \mathcal{L} = 500 \,\text{fb}^{-1}$ and with some discussions [Bechtle,Berggren,List,Schade,Stempel]

$$\delta\sigma(\tilde{\tau}_1)/\sigma(\tilde{\tau}_1) = 3.4\%$$

 $\rightarrow \delta \sin 2\theta_{\tilde{\tau}} / \sin 2\theta_{\tilde{\tau}} = 9\%$ for $\sin 2\theta_{\tilde{\tau}} = 0.67$

As a result, stau production processes yield [500fb⁻¹]


$$m_{\tilde{\mu}LR}^2 = \frac{m_{\mu}}{m_{\tau}} m_{\tilde{\tau}LR}^2 \longrightarrow \left(\delta m_{\tilde{\mu}LR}^2 / m_{\tilde{\mu}LR}^2 = 12\% \right)$$

Parameter	Process	Result
$m_{ ilde{\mu}1},\ m_{ ilde{\mu}2},\ m_{ ilde{\chi}_1^0}$	$e^+e^- \rightarrow \tilde{\ell}^+\tilde{\ell}^-$ $(\tilde{\ell} = \tilde{e}, \tilde{\mu})$	very precise
$m_{ ilde{\mu}LR}^2$	$e^+e^- \to \tilde{\tau}^+\tilde{\tau}^-$ $[\tilde{\tau}_1^+\tilde{\tau}_1^-, \tilde{\tau}_2^+\tilde{\tau}_2^-]$	12% at model point
$ ilde{g}_{1,L}^{(ext{eff})}, \; ilde{g}_{1,R}^{(ext{eff})}$		

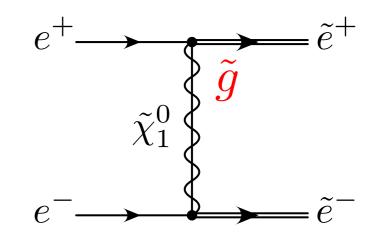
Gaugino Couplings

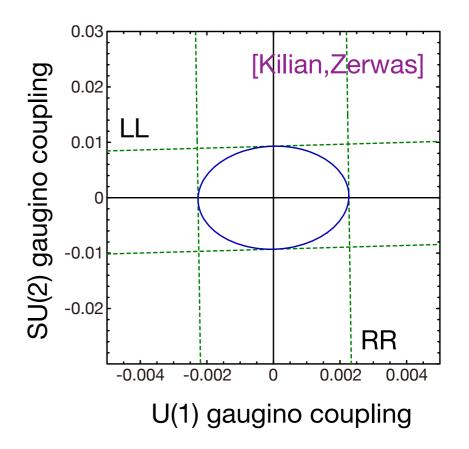
$$\mathcal{L}_{\text{int}} = \bar{\chi}_1^0 \left(N_L P_L + N_R P_R \right) \ell \tilde{\ell}^{\dagger} + \text{h.c.}$$
$$N_L \equiv \frac{1}{\sqrt{2}} \, \tilde{g}_{1,L}^{(\text{eff})}(U_{\tilde{\ell}})_{iL}, \, N_R \equiv -\sqrt{2} \, \tilde{g}_{1,R}^{(\text{eff})}(U_{\tilde{\ell}})_{iR}$$

- LO is approximated by U(1)_Y gauge coupling
- Deviate due to mixing with (heavy) Winos/ Higgsinos and by radiative corrections
 - \rightarrow O(1-10)% correction

Gaugino Couplings

Selectron productions involve neutralino contributions


Right-handed coupling: $\tilde{g}_{1,R}^{(\text{eff})}$


$$\sigma(e^+e^- \to \tilde{e}_R^+ \tilde{e}_R^-) \sim (\tilde{g}_{1,R}^{(\text{eff})})^4$$

Based on previous study at SPS1a with $\sqrt{s} = 500 \, {\rm GeV}, \ {\cal L} = 500 \, {\rm fb}^{-1}$ with discussions [Freitas,Manteuffel,Zerwas]

 $\delta \tilde{g}_{1,R}^{(\mathrm{eff})}/\tilde{g}_{1,R}^{(\mathrm{eff})} \lesssim 1\,\%$

including contaminations from (unobserved) Winos and Higgsinos

Gaugino Couplings

Left-handed coupling: $\tilde{g}_{1,L}^{(\mathrm{eff})}$

$$\sigma(e^+e^- \to \tilde{e}_L^+ \tilde{e}_R^-) \sim (\tilde{g}_{1,L}^{(\text{eff})})^2 \ (\tilde{g}_{1,R}^{(\text{eff})})^2$$

- Previous studies ignore the differences between left- and right-handed gaugino couplings.
- No info. of selectron LR production cross section.

$$\delta \tilde{g}_{1,L}^{(\text{eff})} / \tilde{g}_{1,L}^{(\text{eff})} = \text{a few \% (exp)} + 1\% (\text{th})$$

exp: measurement of cross section th: (unobserved) Winos, Higgsinos

For instance,
$$\delta\sigma(\tilde{e}_L\tilde{e}_R)/\sigma(\tilde{e}_L\tilde{e}_R) = 4\% \rightarrow \delta\tilde{g}_{1,L}^{(\text{eff})}/\tilde{g}_{1,L}^{(\text{eff})} = 2\%$$

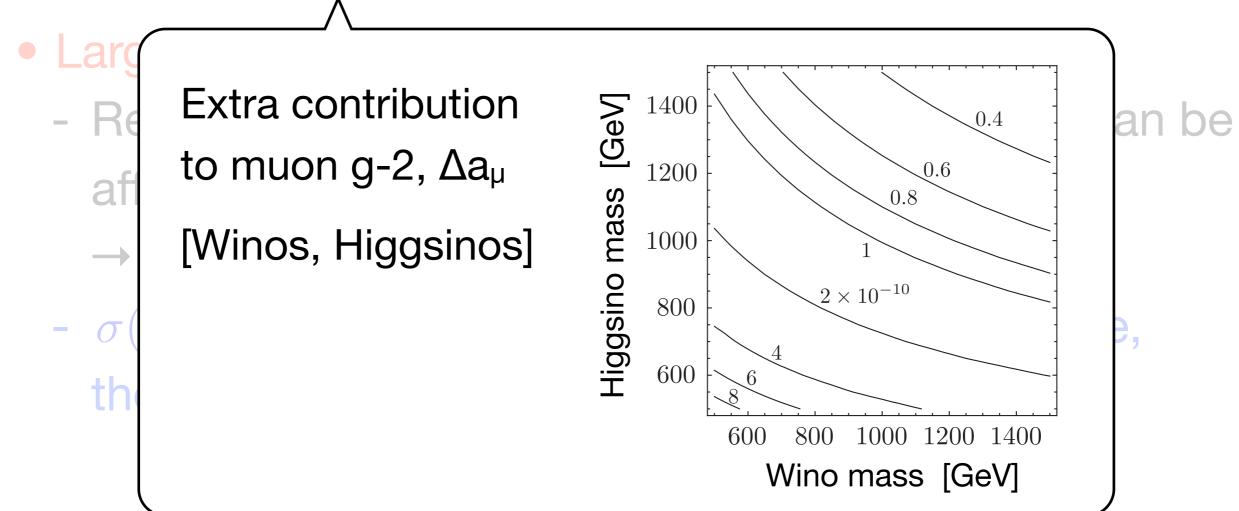
Parameters	Processes	Result
$m_{ ilde{\mu}1},\ m_{ ilde{\mu}2},\ m_{ ilde{\chi}_1^0}$	$e^+e^- \rightarrow \tilde{\ell}^+\tilde{\ell}^-$ $(\tilde{\ell} = \tilde{e}, \tilde{\mu})$	very precise
$m^2_{ ilde{\mu}LR}$	$e^+e^- \to \tilde{\tau}^+\tilde{\tau}^-$ $[\tilde{\tau}_1^+\tilde{\tau}_1^-, \tilde{\tau}_2^+\tilde{\tau}_2^-]$	12% at model point
$ ilde{g}_{1,L}^{(ext{eff})}, \; ilde{g}_{1,R}^{(ext{eff})}$	$e^+e^- \to \tilde{e}^+\tilde{e}^-$ $[\tilde{e}^+_R\tilde{e}^R, e^+_L\tilde{e}^R]$	O(1)%

Reconstruction at ILC

Neutralino contribution to muon g-2 is reconstructed by measuring all the sleptons

$$\delta a_{\mu}^{(\mathrm{ILC})} / a_{\mu}^{(\mathrm{ILC})} \simeq 13 \,\%$$

at the sample point with $\sqrt{s} = 500 \,\text{GeV}, \ \mathcal{L} \sim 500 \,\text{fb}^{-1}$


[ME,Hamaguchi,Iwamoto,Kitahara,Moroi]

Comments

- Effects of (heavy) Winos and Higgsinos
 - Direct contributions to muon g-2
 - No signals in future LHC can reduce uncertainties
- Largest uncertainty is from smuon LR mixing
 - Relation between smuon and stau LR mixings can be affected by slepton trilinear couplings (A-terms)
 → a few percents if A-term ~ slepton masses
 - $\sigma(\tilde{\tau}_1\tilde{\tau}_2)$ is very sensitive to the stau mixing angle, though there are no such studies.

Comments

- Effects of (heavy) Winos and Higgsinos
 - Direct contributions to muon g-2
 - No signals in future LHC can reduce uncertainties

Comments

- Effects of (heavy) Winos and Higgsinos
 - Direct contributions to muon g-2
 - No signals in future LHC can reduce uncertainties
- Largest uncertainty is from smuon LR mixing
 - Relation between smuon and stau LR mixings can be affected by slepton trilinear couplings (A-terms)
 → a few percents if A-term ~ slepton masses
 - $\sigma(\tilde{\tau}_1\tilde{\tau}_2)$ is very sensitive to the stau mixing angle, though there are no such studies.

Summary

- Muon g-2 has >3σ deviation between SM prediction and experimental value.
- SUSY is a good candidate to solve the anomaly.
- We discussed how to test the SUSY contributions.
 - ✓ Neutralino contribution can be probed at ILC.
 - Sleptons are within kinematical reach.
 - It is possible to reconstruct the contribution, if all the sleptons (selectrons, smuons and staus) are measured.

$$\longrightarrow~\delta a_{\mu}^{(\rm ILC)}/a_{\mu}^{(\rm ILC)}\simeq 13\,\%~~$$
 at the sample point