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Outline 

•  Charm mass determinations 

 

•  Bottom mass determinations 

•  Outlook and Conclusions 

-  Deep inelastic scattering 
-  Charmonium sum rules  

-  Inclusive (semileptonic) B decays 
-  Upsilon sum rules  
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Charm Mass 

Will not discuss:  
•  Non-relativistic 

charmonium sum rules 
•  B→Xc l ν  (see bottom part) 
•  Lattice 
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Deep Inelastic Scattering 

Method:  
•  Charm production in 

photon-induced in DIS 
•  “inclusive” F2

c 

•  Tremendous amount of 
data 

•  Very precise theory  

consistent and NNLO 
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Deep Inelastic Scattering 
Theoretical issues:   

•  Different “schemes” to implement charm mass: 

 
 
 
•  Intrinsic charm: non-perturbative non-zero charm pdf 
•  Different technical implementations of VFN (technical, conceptual) 
•  Issues small for bottom, but significant for charm 

-  Variable vs. fixed-flavor number schemes: charm pdf vs. pdf without charm 
-  Different version of variable flavor numbers VFN schemes (ACOT-type schemes) 
-  Correlation to fits of pdf’s and value of 𝛼s  
-  Related to ways to sum logarithms of the charm mass 

 
•  Significant dependence of the charm mass on 

method used 
•  No unanimous agreement of best scheme  
•  In principle very powerful method 
•  Sorting out problems probably more 

important for jet physics itself than for 
charm mass.   (→ SCET version: w.i.p., 
“mass modes”) 

•  Not complete coherent picture at this time 
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Deep Inelastic Scattering 
Alekhin etal.  (2013):   

•  Fixed-Fermion-Number scheme (nf=3 strictly) 

 

•  Combined and correlated analysis of 

-  Only non-charm (u,d,s) pdf 
-  All charm dynamics inside the short-distance calculation 
-  No summation of logarithms related to charm mass lnn(mc/Q) 

-  Fixed-order input at NNLOapprox 
-  Fitting of pdf’s to all data (incl. non-charm, non-DIS) 
-  Fitting of 𝛼s   ( 𝛼s(MZ) = 0.114 xxxx )   

 
•  Improvement on scheme issues of Variable-Flavor-Number schemes  
•  Confirmation of FFN scheme result by VFN schemes (correlated 

analyses) 
•  Issue of VFN schemes (disadvantage? – do not exist in FFN scheme) 

Wishlist for charm mass VFN schemes:  

-  Implementations cannot be unique (mass/Q variable scale) 
-  More renormalization scales (µ, mass matching scale) 
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Inclusive B-Decays 
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Charmonium Sum Rules 

Method:  
•  Moments of the Rc(e+e-

→charm) cross section  
•  Moments computed from 

pQCD  
•  Non-perturbative 

corrections small (a la SVZ) 

2009 CLEO data included  

Outdated: 

  Lower order 

  Updated analyses  

and O(𝛼s
3) 
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Charmonium Sum Rules 
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Charmonium Sum Rules 
Regular moment method:  

Duality bound: n < mc/LambdaQCD ~ 3-4 
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Charmonium Sum Rules 
Finite energy sum rules:  

 
•  Motivated by tau analyses 
•  Cut off high energy continuum where there is not data for Rc 
•  Modify weight resonances vs. non-resonance data 
•  Consistency requires:  p(s0) = 0  (polynomial in sn , n=0,±1,…) 
•  Same results expected as with regular moments: 

-  High energy continuum model taken from theory anyway  
-  Like linear combinations of different finite-energy moments 

Theory status:   
•  Fixed-order moments known to O(𝛼s

3) 
•  R-ratio for massive quarks known to  O(𝛼s

2) [O(𝛼s
3) (approximate)] 

•  Non-perturbative condensates (a la SVZ) small 

Chetyrkin etal, etc 

e.g. Pade 

Both methods essentially with theory input at O(𝛼s
3) 
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Charmonium Sum Rules 

Finite energy:  

→  All analyses used same renormalization scale for 𝛼s(µ) and m(µ) 
and the regular fixed-order expansion.   

Bodenstein etal. 

Regular:   Narison 

Chetyrkin etal. 

→  Continuum models = pQCD prediction 

2 GeV < µ < 4 GeV   (Δµ=35%)   

2 GeV < µ < 4 GeV   

mc(mc) = 1.261± 0.016

mc(mc) = 1.278± 0.009

mc(mc) = 1.279± 0.013

→  Not all available data used 
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Charmonium Sum Rules 
Chetyrkin, Kuhn, Meier, Meierhofer, Marquard 
Steinhauser    (2009)  

Data used:  

2 GeV < µ < 4 GeV   
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Charmonium Sum Rules 
Chetyrkin, Kuhn, Meier, Meierhofer, Marquard 
Steinhauser    (2009)  

Data available:  

2 GeV < µ < 4 GeV   
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Charmonium Sum Rules 

Standard fixed order:  

Linearized:  

Iterative linearized:  

Contour improved:  

Used by 
previous 
analyses 

→ Different expansions: all equally qualified in pQCD. 

Our 
default 

Always has 
solutions! 
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Charmonium Sum Rules 

Our check of different expansions:  →  first check: pert. error considerably larger 

Chetyrkin, Kuhn, Meier, Meierhofer, Marquard 
Steinhauser    (2009)  

2 GeV < µ < 4 GeV   

± 20 MeV 

Dehnadi, AH, Mateu, 
Zebarjad  (2011)  

1st moment analysis 
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Charmonium Sum Rules 
Check of pQCD at µ = charm mass:  

-  Good convergence of pQCD observed at the charm mass scale 
-  No instability visible:  µ = mc  viable choice   
-  But perturbative expansion has O(10 MeV) deviations from resummed results at O(𝛼s

3).  

Search for instabilities of pQCD. 
Dehnadi, AH, Mateu, 
Zebarjad  (2011)  
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Charmonium Sum Rules 
Aims of our analysis:  

 
•  Include all experimental data 
•  Define proper scale variation (so that using different expansions 

does not matter) 

Dehnadi, AH, Mateu, 
Zebarjad  (2011)  

Strong cancellation between RG 
evolution of mass and strong coupling 

Standard fixed-order expansion: 

For µα = µm along a countour line 

  

1st moment analysis 
at O(𝛼s

3) 

Behavior different for other expansion 
versions 

Our conclusions:  
Independent variation of µα and µm.   

Reasonable choice: mc < µα , µm < 4 GeV   
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Charmonium Sum Rules 
Experimental data:  

-  Data combination rebinning and reclustering of different data sets (motivated by 
approach used in g-2 R(had) data 

-  New: include subtraction of non-charm background 
-  Excellent agreement of reclustered data with pQCD above ~ 9 GeV 
-  10% “experimental error” above 10.5 GeV (irrelevant as lower-E real data dominates) 
-  Moments Mn with complete experimental correlation  

Dehnadi, AH, Mateu, 
Zebarjad  (2011)  

Hagiwara etal. 



-  Data combination rebinning and reclustering of different data sets (motivated by 
approach used in g-2 R(had) data 

-  New: include subtraction of non-charm background 
-  Excellent agreement of reclustered data with pQCD above ~ 9 GeV 
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Charmonium Sum Rules 
Experimental data:  

Hagiwara etal. 

Dehnadi, AH, Mateu, 
Zebarjad  (2011)  
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Charmonium Sum Rules 
Our results:  Order-dependence: 

Dehnadi, AH, Mateu, 
Zebarjad  (2011)  

Moment-dependence: 

Exp error : 11 MeV 

Pert. Error: 20 MeV 

mc(mc) = 1.282± 0.024 GeV
mc(3 GeV) = 0.994± 0.026 GeV
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Charmonium Sum Rules 

Our work 
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Charm Mass Sum Rules Dehnadi, AH, Mateu, 
w.i.p.  

Our plans:  

 
•  Charm mass using lattice input for pseudo scalar correlator moments 
•  Finite energy sum rules  

Reanalysis with our method:  

1 2 3
1.10

1.15

1.20
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1.30

1.35

OHaskL

mcHmcL double m variation asHmZ L = 0.1180

1 2 3 41.20

1.22

1.24

1.26

1.28

1.30

1.32

moment

mcHmcL double m variation, OHas3L

Expanded
IterativeAll errors added

[taken from Allison etal. (2008)] 

Preliminary pseudo scalar results:  (still no power corrections included, 
no detailed analysis of all ingredients) 

mc(mc) = 1.263± 0.047 GeV
mc(mc) = 1.263± (0.041)th ± (0.006)lat ± (0.019)↵s GeV

C̄n

[4m̄2

c(µ)]n
= C̄(0)

n


R

2n+1

mexp

⌘

�
2n

1st moment (pert. error): 

1st moment result: (iterative) 

Moment dependence: (all errors) 

[very preliminary !] 
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Bottom Mass 

Will not discuss:  
•  heavy-to-light sum rules 
•  Pert. Upsilon spectrum 

calculations, Ups(1S) 
•  e+e- → 3 jets (big errors) 
•  lattice 
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Inclusive B-Decays 

Method:  
•  B→Xc l ν and B→Xs ɣ   
•  Moments of lepton energy 

spectrum 
•  Moments of hadron invariant mass 

spectrum 
•  Dependence on exp. cuts 
•  pQCD + OPE: in HQET or heavy 

mass expansion 

at O(𝛼s
2 β0) 
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Inclusive B-Decays 

Experimental Data: 
Main aim: Vcb and Vub 
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Inclusive B-Decays 

Theoretical Moments: 

•  theory input: perturbative QCD 

power corrections 

•  expansion scheme: 

A)  short-distance mass (MSbar) 

B)  eliminated (mb - mc =  mB – mD) + power corr. 

•  mass scheme: threshold mass  ( (A)  kinetic,  (B) 1S ) 

A)           expansion 

B)                          expansion 

       input: meson mass difference 

A)   Gambino, Uraltsev (2004) 

B)   Bauer, Ligeti, Luke, Manohar, Trott (2004) 
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Inclusive B-Decays 

Current Status:  
•  Results consistent 
•  Exp error ~ 40 MeV 
•  Syst error ⪅ stat error  
•  theory error ⪅ exp. error  
•  Significant correlations 
•  Combined analyses smaller 

errors (~30-40 MeV) 

Upcoming Developments:  
•  Theory to  O(𝛼s

2) 
•  Moderate error reduction 

feasible, but still one order 
away from sum rule 
precision.   

Biswas, Melnikov 
Pak, Czarnecki 
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Inclusive B-Decays 
Gambino, Schwanda 2013 

Analysis at O(𝛼s
2): 

→  very strong degeneracy mc vs. mb in     
their heavy quark expansion scheme. 

Simple fit for charm and bottom masses 
difficult. 

 →  take mc as input: determine mb 

Chetyrkin etal. →  
Allison etal. →  

Dehnadi etal. →  
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𝚼 Sum Rules 

New Babar data and O(𝛼s
3) 

  O(𝛼s
3) 

  

NNLL nonrelativistic SR 

  

Relativistic SR 
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𝚼 Sum Rules 

nonperturbative 
power corrections 
very small 
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𝚼 Sum Rules 

Only data on resonances 
and between 10.6 GeV 
and 11.2 GeV (BaBar), 
ISR corrections needed 

Use model for continuum, 
higher moments less 
sensitive (MSbar mass) 

Low-E data dominates, 
model irrelevant 
(threshold mass) 
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𝚼 Sum Rules 

Non-relativistic Sum Rules (n>4):   
•  All NNLO fixed-order analyses with O(200 MeV) errors. Special 

treatments needed to achieve 30 / 50 / 100 MeV).  [hard scale ?] 
•  Only RG-improved NNLL analyses with small errors. Only one 

analysis with full NNLL order at this time.  

NNLL vNRQCD:  Hoang, Stahlhofen 2012 

-  Full NNLL (missing NNLL soft mixing log terms small) 
-  Charm mass effects still uncalculated (effects about -30 MeV) 
-  Double scale variation (hard, soft-ultrasoft) 
-  Convergence good but not excellent (dependence on usoft scale) 
-  Charm mass effects (neglected) lead to negative shift ~ 30 MeV 

Consistent with Pineda 
etal. (NNLL corrections 
in c1 were neglected) 

NNLL 
NLL 

NLL 
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𝚼 Sum Rules 

Relativistic Sum Rules (n<4):    
•  Theory input as for charmonium sum rules 
•  Finite-energy sumrules: cut off integration at s0 (analytic 

implementation: designed linear combination of different moments) 
•  Regular moments: needs model input for missing data above 11.2 GeV 
•  Different treatment of strong coupling uncertainties 
 
 

Finite energy:  

→  All analyses used same renormalization scale for 𝛼s(µ) and m(µ).   

Bodenstein etal. mb(mb) = 4.171± 0.009

Regular:   

Chetyrkin etal. 

mb(mb) = 4.177± 0.014
mb(mb) = 4.163± 0.016

Narison 

Chetyrkin etal. 

→  Insensitivity to different continuum models eliminated by design, tested in analysis.   

→  Continuum models = pQCD prediction 

5 GeV < µ < 15 GeV   

4 GeV < µ < 10 GeV (?)   

 (µ ?)   

→  Issue concerning different expansion expected should be less severe  (mb > mc).   
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𝚼 Sum Rules 

 
•  Very good consistency 

with lattice 



1 2 34.05
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𝚼 Sum Rules 
Chetyrkin, Kuhn, Meier, Meierhofer, Marquard 
Steinhauser    (2009)  

± 10 MeV 

Our check of different expansions:  →  pert. error ± 10 MeV expected 
Dehnadi, AH, Mateu, 
w.i.p.  
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𝚼 Sum Rules 

Continuum (11.06 – 11.21 GeV):   

Agreement (averaged) data vs. theory : 4%  
→  conservative continuum model: 

 Rb(theory) ±  4%  
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model error. 
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𝚼 Sum Rules 

Current Status:  
•  Double scale variation avoids 

accidentally small scale variation 
•  Excellent convergence observed. 

More loops will decrease error 

Oportunities:  
•  Full O(𝛼s

4) moments ? 
•  Lattice “exp” moments for 

bottom case ? 
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Conclusions 

•  Charmonium and bottomonium sum rules rule for pQCD methods 

 

 

•  Other methods: NNLO  

•  Comparison with lattice important cross check  

-  “simple” calculations and “simple” concept 
-  Only calculational issue 
-  Status: NNNLO   → O(10-20 MeV) 

-  Precision consistent with NNLO  → O(30-50 MeV) 
-  Improvements toward NNNLO feasible but much harder 

because more issues than just Feynman diagrams need to be 
resolved at the same time 

-  Provide important cross checks 


