Charm and Bottom Quark Masses from Non-Lattice Methods

André H. Hoang

University of Vienna

LCWS 2013, Novermber 11-15, 2013, The University of Tokyo

Outline

- Charm mass determinations
 - Deep inelastic scattering
 - Charmonium sum rules
- Bottom mass determinations
 - Inclusive (semileptonic) B decays
 - Upsilon sum rules
- Outlook and Conclusions

Charm Mass

VALUE (GeV)	DOCUMENT ID		TECN	COMMENT
1.275±0.025 OUR EVALUATION	See the ideogram	n bel	ow.	
1.24 $\pm 0.03 \ +0.03 \ -0.07$	¹ ALEKHIN	13	THEO	MS scheme
1.286 ± 0.066	² NARISON	13	THEO	MS scheme
$1.36 \pm 0.04 \pm 0.10$	³ ALEKHIN	12	THEO	MS scheme
1.261 ± 0.016	⁴ NARISON	12A	THEO	MS scheme
1.278 ± 0.009	⁵ BODENSTEIN	11	THEO	MS scheme
$1.28 \begin{array}{c} +0.07 \\ -0.06 \end{array}$	⁶ LASCHKA	11	THEO	MS scheme
$1.196 \pm 0.059 \pm 0.050$	7 AUBERT	10A	BABR	MS scheme
1.28 ±0.04	⁸ BLOSSIER	10	LATT	MS scheme
1.273 ± 0.006	⁹ MCNEILE	10	LATT	MS scheme
1.279 ± 0.013	¹⁰ CHETYRKIN	09	THEO	MS scheme
1.25 ±0.04	¹¹ SIGNER	09	THEO	MS scheme
1.295 ± 0.015	¹² BOUGHEZAL	06	THEO	MS scheme
1.24 ±0.09	¹³ BUCHMULLER	06	THEO	MS scheme
$1.224 \pm 0.017 \pm 0.054$	¹⁴ HOANG	06	THEO	MS scheme
• • • We do not use the following	g data for averages	, fits,	limits, e	tc. • • •
$1.01 \pm 0.09 \pm 0.03$	¹⁵ ALEKHIN	11	THEO	MS scheme
1.299 ± 0.026	¹⁶ BODENSTEIN	10	THEO	MS scheme
1.261 ± 0.018	¹⁷ NARISON	10	THEO	MS scheme
1.268 ± 0.009	¹⁸ ALLISON	08	LATT	MS scheme
1.286 ± 0.013	¹⁹ KUHN	07	THEO	MS scheme
1.33 ± 0.10	²⁰ AUBERT	04X	THEO	MS scheme
1.29 ±0.07	²¹ HOANG	04	THEO	MS scheme
1.319 ± 0.028	²² DEDIVITIIS	03	LATT	MS scheme
1.19 ± 0.11	²³ EIDEMULLER	03	THEO	MS scheme
1.289 ± 0.043	²⁴ ERLER	03	THEO	MS scheme
1.26 ±0.02	²⁵ ZYABLYUK	03	THEO	MS scheme

Will not discuss:

- Non-relativistic charmonium sum rules
- $B \rightarrow X_c I v$ (see bottom part)

Lattice

Deep Inelastic Scattering

VALUE (GeV)	DOCUMENT ID		TECN	COMMENT
1.275±0.025 OUR EVALUATION	See the ideogram	n bel	ow.	
$1.24 \pm 0.03 \begin{array}{c} +0.03 \\ -0.07 \end{array}$	¹ ALEKHIN	13	THEO	MS scheme
1.286 ± 0.066	² NARISON	13	THEO	MS scheme
$1.36 \pm 0.04 \pm 0.10$	³ ALEKHIN	12	THEO	MS scheme
1.261 ± 0.016	⁴ NARISON	12A	THEO	MS scheme
1.278 ± 0.009	⁵ BODENSTEIN	11	THEO	MS scheme
$1.28 \begin{array}{c} +0.07 \\ -0.06 \end{array}$	⁶ LASCHKA	11	THEO	\overline{MS} scheme
$1.196\!\pm\!0.059\!\pm\!0.050$	⁷ AUBERT	10A	BABR	MS scheme
1.28 ±0.04	⁸ BLOSSIER	10	LATT	MS scheme
1.273 ± 0.006	⁹ MCNEILE	10	LATT	MS scheme
1.279 ± 0.013	¹⁰ CHETYRKIN	09	THEO	MS scheme
1.25 ± 0.04	¹¹ SIGNER	09	THEO	MS scheme
1.295 ± 0.015	¹² BOUGHEZAL	06	THEO	MS scheme
1.24 ±0.09	¹³ BUCHMULLER	806	THEO	MS scheme
$1.224 \pm 0.017 \pm 0.054$	¹⁴ HOANG	06	THEO	MS scheme
• • • We do not use the followin	g data for averages	, fits,	limits, e	tc. • • •
$1.01 \pm 0.09 \pm 0.03$	¹⁵ ALEKHIN	11	THEO	MS scheme
1.299 ± 0.026	16 BODENSTEIN	10	THEO	MS scheme

1.01 ±0.05 ±0.05			THEO	Wio scheme
1.299 ± 0.026	¹⁶ BODENSTEIN	10	THEO	MS scheme
1.261 ± 0.018	¹⁷ NARISON	10	THEO	MS scheme
1.268 ± 0.009	¹⁸ ALLISON	08	LATT	MS scheme
1.286 ± 0.013	¹⁹ KUHN	07	THEO	MS scheme
1.33 ± 0.10	²⁰ AUBERT	04X	THEO	MS scheme
1.29 ±0.07	²¹ HOANG	04	THEO	MS scheme
1.319 ± 0.028	22 DEDIVITIIS	03	LATT	MS scheme
1.19 ± 0.11	²³ EIDEMULLER	03	THEO	MS scheme
1.289 ± 0.043	²⁴ ERLER	03	THEO	MS scheme
1.26 ±0.02	²⁵ ZYABLYUK	03	THEO	MS scheme

Method:

- Charm production in photon-induced in DIS
- "inclusive" F2^c
- Tremendous amount of data
- Very precise theory

consistent and NNLO

Deep Inelastic Scattering

Theoretical issues:

- Different "schemes" to implement charm mass:
 - Variable vs. fixed-flavor number schemes: charm pdf vs. pdf without charm
 - Different version of variable flavor numbers VFN schemes (ACOT-type schemes)
 - Correlation to fits of pdf's and value of α_s
 - Related to ways to sum logarithms of the charm mass
- Intrinsic charm: non-perturbative non-zero charm pdf
- Different technical implementations of VFN (technical, conceptual)
- Issues small for bottom, but significant for charm

- Significant dependence of the charm mass on method used
- No unanimous agreement of best scheme
- In principle very powerful method
- Sorting out problems probably more important for jet physics itself than for charm mass. (→ SCET version: w.i.p., "mass modes")
- Not complete coherent picture at this time

Figure 9: Comparison of χ^2 for HERA I + $F_2^{c\bar{c}}$ fits using different heavy flavor schemes as a function of the charm quark mass parameter m_e^{model} . (Figure from H1prelim-10-143 & ZEUS-prel-10-019)

Deep Inelastic Scattering

Alekhin etal. (2013):

- Fixed-Fermion-Number scheme (n_f=3 strictly)
- Only non-charm (u,d,s) pdf
- All charm dynamics inside the short-distance calculation
- No summation of logarithms related to charm mass Inⁿ(m_c/Q)
- Combined and correlated analysis of
- Fixed-order input at NNLO_{approx}
- Fitting of pdf's to all data (incl. non-charm, non-DIS)
- Fitting of α_s ($\alpha_s(M_Z) = 0.114 \text{ xxxx}$)

 $m_c(m_c) = 1.24 \pm 0.03(\exp)^{+0.03}_{-0.02}(\text{scale})^{+0.00}_{-0.07}(\text{theory}) \text{ GeV}$

Wishlist for charm mass VFN schemes:

- Improvement on scheme issues of Variable-Flavor-Number schemes
- Confirmation of FFN scheme result by VFN schemes (correlated analyses)
- Issue of VFN schemes (disadvantage? do not exist in FFN scheme)
 - Implementations cannot be unique (mass/Q variable scale)
 - More renormalization scales (µ, mass matching scale)

VALUE (GeV)	LUE (GeV) DOCUMENT ID		TECN	COMMENT	
1.275±0.025 OUR EVALUATION See the ideogram belo		ow.			
$1.24 \ \pm 0.03 \ \begin{array}{c} +0.03 \\ -0.07 \end{array}$	¹ ALEKHIN	13	THEO	MS scheme	
1.286 ± 0.066	² NARISON	13	THEO	MS scheme	
$1.36 \pm 0.04 \pm 0.10$	³ ALEKHIN	12	THEO	MS scheme	
1.261 ± 0.016	⁴ NARISON	12A	THEO	MS scheme	
1.278 ± 0.009	⁵ BODENSTE	IN 11	THEO	MS scheme	
$1.28 \begin{array}{c} +0.07 \\ -0.06 \end{array}$	⁶ LASCHKA	11	THEO	MS scheme	
$1.196 \pm 0.059 \pm 0.050$	⁷ AUBERT	10A	BABR	MS scheme	
1.28 ±0.04	⁸ BLOSSIER	10	LATT	MS scheme	
1.273 ± 0.006	⁹ MCNEILE	10	LATT	MS scheme	
1.279 ± 0.013	¹⁰ CHETYRKIN	V 09	THEO	MS scheme	
1.25 ± 0.04	¹¹ SIGNER	09	THEO	MS scheme	
1.295 ± 0.015	¹² BOUGHEZA	L 06	THEO	MS scheme	
1.24 ± 0.09	¹³ BUCHMULL	ER 06	THEO	MS scheme	
$1.224 \pm 0.017 \pm 0.054$	¹⁴ HOANG	06	THEO	MS scheme	
$\bullet \bullet \bullet$ We do not use the following	g data for averag	ges, fits,	limits, e	etc. • • •	
$1.01 \pm 0.09 \pm 0.03$	¹⁵ ALEKHIN	11	THEO	MS scheme	
1.299 ± 0.026	¹⁶ BODENSTE	IN 10	THEO	MS scheme	
1.261 ± 0.018	¹⁷ NARISON	10	THEO	MS scheme	
1.268 ± 0.009	¹⁸ ALLISON	08	LATT	MS scheme	
1.286 ± 0.013	¹⁹ KUHN	07	THEO	MS scheme	
1.33 ± 0.10	²⁰ AUBERT	04X	THEO	MS scheme	
1.29 ±0.07	²¹ HOANG	04	THEO	MS scheme	
1.319 ± 0.028	²² DEDIVITIIS	03	LATT	MS scheme	
1.19 ±0.11	²³ EIDEMULLE	R 03	THEO	MS scheme	
1.289 ± 0.043	²⁴ ERLER	03	THEO	MS scheme	
1.26 ± 0.02	25 ZYABLYUK	03	THEO	MS scheme	

Method:

- Moments of the $R_c(e^+e^-)$ \rightarrow charm) cross section
- Moments computed from pQCD
- Non-perturbative corrections small (a la SVZ)
 - 2009 CLEO data included and $O(\alpha_s^3)$

Outdated:

Lower order

Updated analyses

Regular moment method:

Duality bound: $n < m_c/Lambda_{QCD} \sim 3-4$

Finite energy sum rules:

$$\int_0^{s_0} p(s) \, \frac{1}{\pi} Im \, \Pi(s) \, ds \; = \; - \frac{1}{2\pi i} \oint_{C(|s_0|)} p(s) \, \Pi(s) \, ds \;\; + \; \operatorname{Res}[\Pi(s) \, p(s), s = 0]$$

- Motivated by tau analyses
- Cut off high energy continuum where there is not data for R_c
- Modify weight resonances vs. non-resonance data
- Consistency requires: $p(s_0) = 0$ (polynomial in s^n , $n=0,\pm1,...$)
- Same results expected as with regular moments:
 - High energy continuum model taken from theory anyway
 - Like linear combinations of different finite-energy moments

Theory status:

- Fixed-order moments known to $O(\alpha_s^3)$ Chetyrkin etal, etc
- R-ratio for massive quarks known to $O(\alpha_s^2)$ [$O(\alpha_s^3)$ (approximate)]
- Non-perturbative condensates (a la SVZ) small
 e.g. Pade

Both methods essentially with theory input at $O(\alpha_s^3)$

F	in	it	e	er	le	rg	V :
						_	_

 $\overline{m}_c(\overline{m}_c) = 1.278 \pm 0.009$ 2 GeV < μ < 4 GeV ($\Delta\mu$ =35%)

Bodenstein etal.

Regular:

 $\overline{m}_c(\overline{m}_c) = 1.261 \pm 0.016$ $\overline{m}_c(\overline{m}_c) = 1.279 \pm 0.013$ 2 GeV < µ < 4 GeV

Narison Chetyrkin etal.

- \rightarrow Continuum models = pQCD prediction
- \rightarrow Not all available data used

 \rightarrow All analyses used same renormalization scale for $\alpha_s(\mu)$ and m(μ) and the regular fixed-order expansion.

n	m_c (3 GeV)	exp	α_s	μ	np	total
1	986	(9)	9	(2)	1	13
2	976	6	14	5	0	16
3	978	5	15	7	2	17
4	1004	3	9	31	7	33

Data used:

Data used in Kühn et al (2004, 2005, ...)

Chetyrkin, Kuhn, Meier, Meierhofer, Marquard Steinhauser (2009)

- $m_{\rm C}(3\,{\rm GeV}) = 986 \pm 13\,{\rm MeV}$
- $m_{\rm C}(m_{\rm C}) = 1279 \pm 13 \,{\rm MeV}$

 $2 \text{ GeV} < \mu < 4 \text{ GeV}$

Data used in Bodenstein et al

n	m_c (3 GeV)	exp	α_s	μ	np	total
1	986	(9)	9	(2)	1	13
2	976	6	14	5	0	16
3	978	5	15	7	2	17
4	1004	3	9	31	7	33

Data available:

Chetyrkin, Kuhn, Meier, Meierhofer, Marquard Steinhauser (2009)

- $m_{\rm C}(3\,{\rm GeV}) = 986 \pm 13\,{\rm MeV}$
- $m_{\rm C}(m_{\rm C}) = 1279 \pm 13 \,{\rm MeV}$

 $2 \text{ GeV} < \mu < 4 \text{ GeV}$

 \rightarrow Different expansions: all equally qualified in pQCD.

Standard fixed order:

$$M_n^{\text{pert}} = \frac{1}{(4\overline{m}_c^2(\mu_m))^n} \sum_{i,a,b} \left(\frac{\alpha_s(\mu_\alpha)}{\pi}\right)^i C_{n,i}^{a,b} \ln^a \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_m^2}\right) \ln^b \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_\alpha^2}\right)$$

Used by previous analyses

Linearized: $(M_n^{\text{th,pert}})^{1/2n} = \frac{1}{2\overline{m}_c(\mu_m)} \sum_{i,a,b} \left(\frac{\alpha_s(\mu_\alpha)}{\pi}\right)^i \tilde{C}_{n,i}^{a,b} \ln^a \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_m^2}\right) \ln^b \left(\frac{\overline{m}_c^2(\mu_m)}{\mu_\alpha^2}\right)$

Iterative linearized:

Always has solutions!

$$\overline{m}_{c}^{(1)}(\mu_{m}) = \frac{1}{2\left(M_{n}^{\text{th,pert}}\right)^{1/2n}} \left\{ \tilde{C}_{n,0}^{0,0} + \frac{\alpha_{s}(\mu_{\alpha})}{\pi} \left[\tilde{C}_{n,1}^{0,0} + \tilde{C}_{n,1}^{1,0} \ln\left(\frac{\overline{m}_{c}^{(0)\,2}}{\mu_{m}^{2}}\right) \right] \right\} \quad \text{All so}$$

Contour improved:

$$\begin{split} M_n^{\rm c, pert} &= \frac{6\pi Q_c^2}{i} \int_c \frac{\mathrm{d}s}{s^{n+1}} \Pi(q^2, \alpha_s(\mu_\alpha^c(s, \overline{m}_c^2)), \overline{m}_c(\mu_m), \mu_\alpha^c(s, \overline{m}_c^2), \mu_m) \\ (\mu_\alpha^c)^2(s, \overline{m}_c^2) &= \mu_\alpha^2 \left(1 - \frac{s}{4\overline{m}_c^2(\mu_m)}\right) \end{split}$$

n	m_c (3 GeV)	exp	α_s	μ	np	total
1	986	(9)	9	(2)	1	13
2	976	6	14	5	0	16
3	978	5	15	7	2	17
4	1004	3	9	31	7	33

Chetyrkin, Kuhn, Meier, Meierhofer, Marquard Steinhauser (2009)

- $m_{\rm C}(3\,{\rm GeV}) = 986 \pm 13\,{\rm MeV}$
- $m_{\rm C}(m_{\rm C}) = 1279 \pm 13 \,{\rm MeV}$

 $2 \text{ GeV} < \mu < 4 \text{ GeV}$

Our check of different expansions:

 \rightarrow first check: pert. error considerably larger

Figure 4. Results for $\overline{m}_c(\overline{m}_c)$ at various orders, for methods a (graphs 1 and 5), b (2,6), c (3,7), and d (4,8), setting $\mu_{\alpha} = \mu_m$ (graphs 1-4) and setting $\mu_m = \overline{m}_c(\overline{m}_c)$ (5-8). The shaded regions arise from the variation $2 \text{ GeV} \le \mu_{\alpha} \le 4 \text{ GeV}$.

- Good convergence of pQCD observed at the charm mass scale
- No instability visible: $\mu = m_c$ viable choice
- But perturbative expansion has O(10 MeV) deviations from resummed results at O(α_s^3).

Dehnadi, AH, Mateu, Zebarjad (2011)

- Include all experimental data
- Define proper scale variation (so that using different expansions does not matter)

Aims of our analysis:

Standard fixed-order expansion:

For $\mu_{\alpha} = \mu_{m}$ along a countour line

Strong cancellation between RG evolution of mass and strong coupling

Behavior different for other expansion versions

Our conclusions:

Independent variation of μ_{α} and $\mu_{m.}$ Reasonable choice: m_{c} < μ_{α} , μ_{m} < 4 GeV

Figure 6. Contour plots for $\overline{m}_c(\overline{m}_c)$ as a function of μ_{α} and μ_m at $\mathcal{O}(\alpha_s^3)$, for methods (a)–(d). The shaded areas represent regions with $\mu_m, \mu_{\alpha} < \overline{m}_c(\overline{m}_c)$, and are excluded of our analysis.

Experimental data:

Dehnadi, AH, Mateu, Zebarjad (2011)

- Data combination rebinning and reclustering of different data sets (motivated by approach used in g-2 R(had) data
 - Hagiwara etal.

- New: include subtraction of non-charm background
- Excellent agreement of reclustered data with pQCD above ~ 9 GeV
- 10% "experimental error" above 10.5 GeV (irrelevant as lower-E real data dominates)
- Moments M_n with complete experimental correlation

Experimental data:

Dehnadi, AH, Mateu, Zebarjad (2011)

- Data combination rebinning and reclustering of different data sets (motivated by approach used in g-2 R(had) data
 Hagiwara etal.
- New: include subtraction of non-charm background
- Excellent agreement of reclustered data with pQCD above ~ 9 GeV
- 10% "experimental error" above 10.5 GeV (irrelevant as lower-E real data dominates)
- Moments M_n with complete experimental correlation

LCWS 2013, The University of Tokyo

Our plans:

Reanalysis with our method:

- Charm mass using lattice input for pseudo scalar correlator moments
- Finite energy sum rules

[taken from Allison etal. (2008)]

Preliminary pseudo scalar results:

(still no power corrections included, no detailed analysis of all ingredients)

1st moment result: (iterative) [very preliminary !]

 $\overline{m}_c(\overline{m}_c) = 1.263 \pm (0.041)_{\text{th}} \pm (0.006)_{\text{lat}} \pm (0.019)_{\alpha_s} \text{ GeV}$ $\overline{m}_c(\overline{m}_c) = 1.263 \pm 0.047 \text{ GeV}$

Bottom Mass

MS MASS (GeV)	15 MASS (GeV)	DOCUMENT ID	TECN
4.18 ±0.03 OUR EVAL	UATION of MS Mass.	See the ideogram below.	
4.66 ±0.03 OUR EVAL	UATION of $1S$ Mass. 3	See the ideogram below.	
4.236±0.069	4.715 ± 0.077	¹ NARISON 13	3 THEO
4.171 ± 0.009	4.642 ± 0.010	² BODENSTEIN 12	2 THEO
4.29 ±0.14	4.77 ± 0.16	³ DIMOPOUL 12	2 LATT
$4.235\!\pm\!0.003\!\pm\!0.055$	$4.755 \pm 0.003 \pm 0.058$	⁴ HOANG 12	2 THEO
4.177 ± 0.011	$\textbf{4.649} \pm \textbf{0.012}$	⁵ NARISON 12	2 THEO
$4.18 \begin{array}{c} +0.05 \\ -0.04 \end{array}$	4.65 + 0.06 - 0.04	⁶ LASCHKA 1	1 THEO
$4.186 \pm 0.044 \pm 0.015$	$4.659 \pm 0.050 \pm 0.017$	⁷ AUBERT 10	0A BABR
4.164±0.023	4.635 ± 0.026	⁸ MCNEILE 10	0 LATT
4.163 ± 0.016	4.633 ± 0.018	9 CHETYRKIN 09	9 THEO
5.26 ± 1.2	5.85 ± 1.3	¹⁰ ABDALLAH 08	BD DLPH
4.243 ± 0.049	$\textbf{4.723} \pm \textbf{0.055}$	¹¹ SCHWANDA 08	8 BELL
4.19 ±0.40	4.66 ± 0.45	¹² ABDALLAH 06	6D DLPH
4.205 ± 0.058	4.68 ± 0.06	13 BOUGHEZAL 00	6 THEO
4.20 ±0.04	4.67 ± 0.04	¹⁴ BUCHMULLER0	6 THEO
4.19 ±0.06	4.66 ± 0.07	¹⁵ PINEDA 00	6 THEO
4.17 ±0.03	4.68 ± 0.03	¹⁰ BAUER 04	4 THEO
4.22 ± 0.11	4.72 ± 0.12	10 HOANG 04	4 THEO
4.19 ± 0.05	4.66 ± 0.05	¹⁹ BORDES 03	3 THEO
4.20 ±0.09	4.67 ± 0.10	²⁰ CORCELLA 03	3 THEO
4.24 ± 0.10	4.72 ± 0.11	²¹ EIDEMULLER 03	3 THEO
4.207 ± 0.031	4.682 ± 0.035	²² ERLER 03	3 THEO
$4.33 \pm 0.06 \pm 0.10$	$4.82 \pm 0.07 \pm 0.11$	²³ MAHMOOD 03	3 CLEO
4.190±0.032	4.663 ± 0.036	25 DENUN	2 THEO
4.346 ± 0.070	4.837 ± 0.078	20 NARISON 12	2 THEO
4.212 ± 0.032	4.000 ± 0.030		
4.171 ± 0.014 4 173 ± 0.010	4.042 ± 0.010		
4.175 ± 0.010	4.043 ± 0.011	29 CHAZZINI 08	
$4.347 \pm 0.048 \pm 0.08$	$4.838 \pm 0.053 \pm 0.09$	30 DELLA-MOR	
4.164 ± 0.025	4.635 ± 0.028	31 KUHN 07	7 THEO
4.4 ±0.3	4.9 ± 0.3	17,32 GRAY 05	5 LATT
4.22 ±0.06	4.72 ± 0.07	33 AUBERT 04	4X THEO
4.25 ±0.11	4.76 ± 0.12	17,34 MCNEILE 04	4 LATT
4.22 ±0.09	4.74 ± 0.10	³⁵ BAUER 03	3 THEO
4.33 ±0.10	4.84 ± 0.11	17,36 DEDIVITIIS 03	3 LATT

universität wien

Will not discuss:

- heavy-to-light sum rules
- Pert. Upsilon spectrum calculations, Ups(1S)
- $e^+e^- \rightarrow 3$ jets (big errors)

lattice

MS MASS (GeV)	15 MASS (GeV)	DOCUMENT ID	TECN
4.18 ±0.03 OUR EVAL	UATION of \overline{MS} Mass.	See the ideogram below.	
4.66 ±0.03 OUR EVAL	UATION of $1S$ Mass.	See the ideogram below.	
$\begin{array}{l} 4.236 \pm 0.069 \\ 4.171 \pm 0.009 \\ 4.29 \ \pm 0.14 \end{array}$	$\begin{array}{l} 4.715 \pm 0.077 \\ 4.642 \pm 0.010 \\ 4.77 \pm 0.16 \end{array}$	¹ NARISON 13 ² BODENSTEIN 12 ³ DIMOPOUL 12	THEO THEO LATT
4.235±0.003±0.055 4.177±0.011	$\begin{array}{l} 4.755 \pm 0.003 \pm 0.058 \\ 4.649 \pm 0.012 \end{array}$	⁴ HOANG 12 ⁵ NARISON 12	THEO THEO
$4.18 \begin{array}{c} +0.05 \\ -0.04 \end{array}$	$4.65 \substack{+0.06 \\ -0.04}$	⁶ LASCHKA 11	THEO
$4.186 \!\pm\! 0.044 \!\pm\! 0.015$	$4.659 \pm 0.050 \pm 0.017$	⁷ AUBERT 10A	BABR
4.164 ± 0.023 4.163 ± 0.016 5.26 ± 1.2	$\begin{array}{l} 4.635 \pm 0.026 \\ 4.633 \pm 0.018 \\ 5.85 \pm 1.3 \end{array}$	⁸ MCNEILE 10 ⁹ CHETYRKIN 09 ¹⁰ ABDALLAH 08D	LATT THEO DLPH
4.243 ± 0.049	$\textbf{4.723} \pm \textbf{0.055}$	¹¹ SCHWANDA 08	BELL
$\begin{array}{r} 4.19 \ \pm 0.40 \\ 4.205 {\pm} 0.058 \end{array}$	$\begin{array}{l} 4.66 \pm 0.45 \\ 4.68 \pm 0.06 \end{array}$	¹² ABDALLAH 06D ¹³ BOUGHEZAL 06	DLPH THEO
4.20 ± 0.04	4.67 ± 0.04	¹⁴ BUCHMULLER06	THEO
4.19 ± 0.06	4.66 ± 0.07	¹⁵ PINEDA 06	THEO
4.17 ±0.03	4.68 ± 0.03	¹⁶ BAUER 04	THEO
4.22 ± 0.11	4.72 ± 0.12	^{17,18} HOANG 04	THEO
4.19 ± 0.05	4.66 ± 0.05	¹⁹ BORDES 03	THEO
4.20 ±0.09	4.67 ± 0.10	20 CORCELLA 03	THEO
4.24 ± 0.10	4.72 ± 0.11	22 EIDEMULLER 03	THEO
4.207±0.031	4.682 ± 0.035	²² ERLER 03	THEO
$4.33 \pm 0.06 \pm 0.10$	$4.82 \pm 0.07 \pm 0.11$	24 PRANDULA 03	CLEO
4.190 ± 0.032 4.346 ± 0.070 4.212 ± 0.032 4.171 ± 0.014	$\begin{array}{c} 4.663 \pm 0.036 \\ 4.837 \pm 0.078 \\ 4.688 \pm 0.036 \\ 4.642 \pm 0.016 \end{array}$	25 PENIN 02 26 NARISON 12 27 NARISON 12	THEO THEO THEO
4.171 ± 0.014 4.172 ± 0.010	4.042 ± 0.010	28 NARISON 12A	
4.173 ± 0.010	4.045 ± 0.011 $4.02 \pm 0.07 \pm 0.00$	29 CHAZZINI 08	
$4.42 \pm 0.00 \pm 0.08$ $4.347 \pm 0.048 \pm 0.08$	$4.92 \pm 0.07 \pm 0.09$ $4.838 \pm 0.053 \pm 0.09$	30 DELLA-MOR 07	
$4.547 \pm 0.040 \pm 0.00$	$4.030 \pm 0.033 \pm 0.03$	31 KUHN 07	THEO
44 +0.3	49 + 0.3	17,32 GRAY 05	LATT
4.22 ±0.06	4.72 ± 0.07	33 AUBERT 04x	THEO
4.25 ±0.11	4.76 ± 0.12	17,34 MCNEILE 04	LATT
4.22 ±0.09	4.74 ± 0.10	³⁵ BAUER 03	THEO
4.33 ±0.10	4.84 ± 0.11	17,36 DEDIVITIIS 03	LATT

niversitat

Method:

- $B \rightarrow X_c I v \text{ and } B \rightarrow X_s \gamma$
- Moments of lepton energy spectrum
- Moments of hadron invariant mass spectrum
- Dependence on exp. cuts
- pQCD + OPE: in HQET or heavy mass expansion

• at $O(\alpha_s^2 \beta_0)$

Main aim: V_{cb} and V_{ub}

Experimental Data:

moments in semileptonic decays

- E_I : lepton energy spectrum in $B \rightarrow X_c I \vee$ (BaBar Belle CLEO DELPHI)
- M_X^2 : hadronic mass spectrum in $B \rightarrow X_c I \vee$ (BaBar CDF CLEO DELPHI)

 E_{y} : photon energy spectrum in $B \rightarrow X_{sY}$ (Babar Belle CLEO)

Theoretical Moments:

- <u>theory input:</u> perturbative QCD $O(\alpha_s, \alpha_s^2 \beta_0)$ power corrections $O(\Lambda_{\rm QCD}^2/m^2, \Lambda_{\rm QCD}^3/m^3)$
 - A) Gambino, Uraltsev (2004)
 - B) Bauer, Ligeti, Luke, Manohar, Trott (2004)
- <u>expansion scheme:</u> A) $1/m_b$ expansion $\Rightarrow |V_{cb}|, m_b, m_c, \lambda_{1,2}, \rho_{1,2}$ B) $1/m_b \& 1/m_c$ expansion $\Rightarrow |V_{cb}|, m_b, \lambda_1, \rho_1, \tau_{1,2,3}^*$ input: meson mass difference • <u>mass scheme:</u> m_b : threshold mass ((A) kinetic, (B) 1S) m_c : A) short-distance mass (MSbar) B) eliminated ($m_b - m_c = m_B - m_D$) + power corr.

Current Status:

- Results consistent
- Exp error ~ 40 MeV
- Syst error ≲ stat error
- theory error ≲ exp. error
- Significant correlations
- Combined analyses smaller errors (~30-40 MeV)

Upcoming Developments:

- Theory to $O(\alpha_s^2)$ Biswas, Melnikov Pak, Czarnecki
- Moderate error reduction feasible, but still one order away from sum rule precision.

Gambino, Schwanda 2013

Analysis at $O(\alpha_s^2)$:

 \rightarrow very strong degeneracy m_c vs. m_b in their heavy quark expansion scheme.

Simple fit for charm and bottom masses difficult.

 \rightarrow take m_c as input: determine m_b

	$\overline{m}_c(3{ m GeV})$	$m_b^{kin}(1{ m GeV})$	$\overline{m}_b(\overline{m}_b)$
Chetyrkin etal. \rightarrow	0.986(13) 11	4.541(23)	4.171(38)
Allison etal. \rightarrow	0.986(6) [12]	4.540(20)	4.170(36)
Dehnadi etal. →	0.998(29) 13	4.552(31)	4.182(43)

Table 2: b mass resulting from different m_c determinations. All masses are expressed in GeV.

	MS MASS (GeV)	15 MASS (GeV)	DOCUMENT ID	TECN
	4.18 ±0.03 OUR EVAL	UATION of MS Mass.	See the ideogram below.	
	4.66 ±0.03 OUR EVAL	.UATION of $1S$ Mass.	See the ideogram below.	
	4.236 ± 0.069	4.715 ± 0.077	¹ NARISON 13	THEO
	4.171 ± 0.009	4.642 ± 0.010	² BODENSTEIN 12	THEO
	4.29 ± 0.14	4.77 ± 0.16	³ DIMOPOUL 12	LATT
\bigcirc	$4.235 \!\pm\! 0.003 \!\pm\! 0.055$	$4.755 \pm 0.003 \pm 0.058$	⁴ HOANG 12	THEO
	4.177 ± 0.011	$\textbf{4.649} \pm \textbf{0.012}$	⁵ NARISON 12	THEO
	$\substack{\textbf{4.18} + 0.05 \\ -0.04}$	$4.65 \substack{+0.06 \\ -0.04}$	⁶ LASCHKA 11	THEO
	$4.186\!\pm\!0.044\!\pm\!0.015$	$4.659 \pm 0.050 \pm 0.017$	7 AUBERT 10A	BABR
	4.164 ± 0.023	4.635 ± 0.026	⁸ MCNEILE 10	LATT
	4.163 ± 0.016	4.633 ± 0.018	⁹ CHETYRKIN 09	THEO
	5.26 ± 1.2	5.85 ± 1.3	10 ABDALLAH 08D	DLPH
	4.243±0.049	4.723 ± 0.055	11 SCHWANDA 08	BELL
	4.19 ±0.40	4.66 ± 0.45	12 ABDALLAH 06D	DLPH
	4.205 ± 0.058	4.68 ± 0.06	¹³ BOUGHEZAL 06	THEO
	4.20 ±0.04	4.67 ± 0.04	¹⁴ BUCHMULLER06	THEO
	4.19 ±0.06	4.66 ± 0.07	¹⁵ PINEDA 06	THEO
	4.17 ±0.03	4.68 ± 0.03	15 BAUER 04	THEO
	4.22 ±0.11	4.72 ± 0.12	^{17,18} HOANG 04	THEO
	4.19 ±0.05	4.66 ± 0.05	¹⁹ BORDES 03	THEO
	4.20 ±0.09	4.67 ± 0.10	20 CORCELLA 03	THEO
	4.24 ±0.10	4.72 ± 0.11	²¹ EIDEMULLER 03	THEO
	4.207 ± 0.031	4.682 ± 0.035	²² ERLER 03	THEO
	$4.33 \pm 0.06 \pm 0.10$	$4.82 \pm 0.07 \pm 0.11$	²³ MAHMOOD 03	CLEO
	4.190 ± 0.032	4.663 ± 0.036	²⁴ BRAMBILLA 02	THEO
	4.346 ± 0.070	4.837 ± 0.078	²⁵ PENIN 02	THEO
	4.212 ± 0.032	4.688 ± 0.036	20 NARISON 12	THEO
	4.171±0.014	4.642 ± 0.016	21 NARISON 12A	THEO
	4.173±0.010	4.645 ± 0.011	20 NARISON 10	THEO
	$4.42 \pm 0.06 \pm 0.08$	$4.92 \pm 0.07 \pm 0.09$	30 DELLA MOD	
	$4.347 \pm 0.048 \pm 0.08$	$4.838 \pm 0.053 \pm 0.09$	30 DELLA-MOR 07	
	4.104±0.025	4.035 ± 0.028	17.32 CDAX	THEO
	4.4 ±0.3	4.9 ± 0.3	-1,32 GRAY 05	
	4.22 ±0.06	4.72 ± 0.07	17 34 MONEU E	THEO
	4.25 ±0.11	4.70 ± 0.12	35 DALLED	
	4.22 ±0.09	4.74 ± 0.10	17.36 DEDN (ITUC 03	THEO
	4.33 ± 0.10	4.84 ± 0.11	DEDIVITIIS 03	LATT

universität wien NNLL nonrelativistic SR

Relativistic SR New Babar data and $O(\alpha_s^3)$

O(α_s^3)

Non-relativistic Sum Rules (n>4):

- All NNLO fixed-order analyses with O(200 MeV) errors. Special treatments needed to achieve 30 / 50 / 100 MeV). [hard scale ?]
- Only RG-improved NNLL analyses with small errors. Only one analysis with full NNLL order at this time.

NNLL vNRQCD:

Hoang, Stahlhofen 2012

$$P_n^{th,\text{NNLL}} = \frac{3 N_c Q_b^2 \sqrt{\pi}}{4^{n+1} (M_b^{\text{pole}})^{2n} n^{3/2}} \left\{ c_1(h,\nu)^2 \varrho_{n,1}(h,\nu) + 2 c_1(h,\nu) c_2(h,\nu) \varrho_{n,2}(h,\nu) \right\}$$

- Full NNLL (missing NNLL soft mixing log terms small)
- Charm mass effects still uncalculated (effects about -30 MeV)
- Double scale variation (hard, soft-ultrasoft)
- Convergence good but not excellent (dependence on usoft scale)
- Charm mass effects (neglected) lead to negative shift ~ 30 MeV

 $M_b^{1S} = 4.755 \pm 0.057_{\text{pert}} \pm 0.009_{\alpha_s} \pm 0.003_{\text{exp}} \text{ GeV}$ $\overline{m}_b(\overline{m}_b) = 4.235 \pm 0.055_{\text{pert}} \pm 0.003_{\text{exp}} \text{ GeV}$

Consistent with Pineda etal. (NNLL corrections in c_1 were neglected)

Relativistic Sum Rules (n<4):

- Theory input as for charmonium sum rules Chetyrkin etal.
- <u>Finite-energy sumrules</u>: cut off integration at s₀ (analytic implementation: designed linear combination of different moments)
- <u>Regular moments</u>: needs model input for missing data above 11.2 GeV
- Different treatment of strong coupling uncertainties

 \rightarrow All analyses used same renormalization scale for $\alpha_{s}(\mu)$ and m(μ).

 \rightarrow Issue concerning different expansion expected should be less severe (m_b > m_c).

Finite energy:

 $\overline{m}_b(\overline{m}_b) = 4.171 \pm 0.009$

5 GeV < µ < 15 GeV Bodenstein etal.

 \rightarrow Insensitivity to different continuum models eliminated by design, tested in analysis.

Regular:

$$\overline{m}_b(\overline{m}_b) = 4.177 \pm 0.014$$

 $\overline{m}_b(\overline{m}_b) = 4.163 \pm 0.016$

Narison (µ ?) Chetyrkin etal.

4 GeV < µ < 10 GeV (?)

 \rightarrow Continuum models = pQCD prediction

WEIGHTED AVERAGE 4.178±0.005 (Error scaled by 1.0) χ^2 0.7 NARISON 13 THEO **BODENSTEIN 12** THEO 0.7 DIMOPOUL ... LATT 12 \geq HOANG 12 THEO 1.1 12 THEO 0.0 NARISON LASCHKA THEO 11 0.0 10A BABR 0.0 AUBERT LATT **MCNEILE** 10 0.4 **CHETYRKIN** THEO 0.9 09 ABDALLAH 08D DLPH **SCHWANDA** BELL 1.7 08 DLPH ABDALLAH 06D BOUGHEZAL 06 THEO 0.2 THEO **BUCHMULLER 06** 0.3 **PINEDA** THEO 0.0 06 BAUER THEO 0.1 04 HOANG THEO 04 BORDES THEO 03 0.1 THEO CORCELLA 03 **EIDEMULLER 03** THEO ERLER THEO 0.9 03 MAHMOOD 03 CLEO BRAMBILLA 02 THEO 0.1 5.7 PENIN 02 THEO 12.9 (Confidence Level = 0.679) 4.5 4.1 4.2 4.3 4.4 4.6 4

 Very good consistency with lattice

universität wien

b-QUARK MS MASS (GeV)

n	$m_b(10{ m GeV})$	exp	α_s	μ	total	$m_b(m_b)$
1	3597	14	7	2	16	4151
2	3610	(10)	12	(3)	16	4163
3	3619	8	14	6	18	4172
4	3631	6	15	20	26	4183

Chetyrkin, Kuhn, Meier, Meierhofer, Marquard Steinhauser (2009)

• $m_{\rm b}(10\,{\rm GeV}) = 3610\pm16\,{\rm MeV}$

•
$$m_{\rm b}(m_{\rm b}) = 4163 \pm 16 \,{\rm MeV}$$

<u>Our check of different expansions:</u> \rightarrow pert. error ± 10 MeV expected

Dehnadi, AH, Mateu, w.i.p.

 $\overline{m}_b(\overline{m}_b)$ [GeV]

2

n

Iterative

Expanded

4

3

Very preliminary

Agreement (averaged) data vs. theory : 4% \rightarrow conservative continuum model: R_{h} (theory) ± 4%

4.250

4.225

4.200

4.175

4.150 4.125 4.100

MS MASS (GeV)	15 MASS (GeV)	DOCUMENT ID		TECN
4.18 ±0.03 OUR EVAL	UATION of MS Mass.	See the ideogram belo	w.	
4.66 ±0.03 OUR EVAL	UATION of $1S$ Mass.	See the ideogram below	Ν.	
4.236±0.069	4.715 ± 0.077	¹ NARISON	13	THEO
4.171 ± 0.009	4.642 ± 0.010	² BODENSTEIN	12	THEO
4.29 ±0.14	4.77 ± 0.16	³ DIMOPOUL	12	LATT
$4.235\!\pm\!0.003\!\pm\!0.055$	$4.755 \pm 0.003 \pm 0.058$	⁴ HOANG	12	THEO
4.177 ± 0.011	4.649 ± 0.012	⁵ NARISON	12	THEO
$\substack{\textbf{4.18} + \textbf{0.05} \\ -\textbf{0.04}}$	$4.65 \substack{+ \ 0.06 \\ - \ 0.04}$	⁶ LASCHKA	11	THEO
$4.186\!\pm\!0.044\!\pm\!0.015$	$4.659 \pm 0.050 \pm 0.017$	⁷ AUBERT	10A	BABR
4.164 ± 0.023	4.635 ± 0.026	⁸ MCNEILE	10	LATT
4.163 ± 0.016	4.633 ± 0.018	⁹ CHETYRKIN	09	THEO
5.26 ± 1.2	5.85 ± 1.3	¹⁰ ABDALLAH	08 D	DLPH
4.243±0.049	4.723 ± 0.055	¹¹ SCHWANDA	08	BELL
4.19 ±0.40	4.66 ± 0.45	¹² ABDALLAH	06D	DLPH
4.205 ± 0.058	4.68 ± 0.06	¹³ BOUGHEZAL	06	THEO
4.20 ±0.04	4.67 ± 0.04	¹⁴ BUCHMULLER	06	THEO
4.19 ± 0.06	4.66 ± 0.07	¹⁵ PINEDA	06	THEO
4.17 ±0.03	4.68 ± 0.03	10 BAUER	04	THEO
4.22 ±0.11	4.72 ± 0.12	^{17,18} HOANG	04	THEO
4.19 ± 0.05	4.66 ± 0.05	¹⁹ BORDES	03	THEO
4.20 ±0.09	4.67 ± 0.10	20 CORCELLA	03	THEO
4.24 ±0.10	4.72 ± 0.11	²¹ EIDEMULLER	03	THEO
4.207 ± 0.031	4.682 ± 0.035	22 ERLER	03	THEO
$4.33 \pm 0.06 \pm 0.10$	$4.82 \pm 0.07 \pm 0.11$	²³ MAHMOOD	03	CLEO
4.190 ± 0.032	4.663 ± 0.036	²⁴ BRAMBILLA	02	THEO
4.346 ± 0.070	4.837 ± 0.078	²⁵ PENIN	02	THEO
4.212 ± 0.032	4.688 ± 0.036	20 NARISON	12	THEO
4.171 ± 0.014	4.642 ± 0.016	27 NARISON	12A	THEO
4.173±0.010	4.645 ± 0.011	20 NARISON	10	THEO
$4.42 \pm 0.06 \pm 0.08$	$4.92 \pm 0.07 \pm 0.09$	²⁹ GUAZZINI	08	
$4.347 \pm 0.048 \pm 0.08$	$4.838 \pm 0.053 \pm 0.09$	30 DELLA-MOR	07	LATT
4.164±0.025	4.635 ± 0.028	17 32 CD N/	07	THEO
4.4 ±0.3	4.9 ± 0.3	33 AURTON	05	
4.22 ± 0.06	4.72 ± 0.07	17 34 MONEN E	04X	THEO
4.25 ± 0.11	4.70 ± 0.12	35 DALIER	04	
4.22 ± 0.09	4.74 ± 0.10	17 36 DED IN	03	THEO
4.33 ± 0.10	4.84 ± 0.11	1,50 DEDIVITIIS	03	LATT

Current Status:

- Double scale variation avoids accidentally small scale variation
- Excellent convergence observed. More loops will decrease error

Oportunities:

- Full O(α_s^4) moments ?
- Lattice "exp" moments for bottom case ?

Conclusions

• Charmonium and bottomonium sum rules rule for pQCD methods

- "simple" calculations and "simple" concept
- Only calculational issue
- Status: NNNLO \rightarrow O(10-20 MeV)

• Other methods: NNLO

- Precision consistent with NNLO \rightarrow O(30-50 MeV)
- Improvements toward NNNLO feasible but much harder because more issues than just Feynman diagrams need to be resolved at the same time
- Provide important cross checks
- Comparison with lattice important cross check

