Status of R&D of Optical Cvities at KEK-ATF

Tohru Takahashi Hiroshima University for

KEK, Hiroshima University LAL (Orsay) in Collaboration withCELIA (Laser lab., Bordeaux) and LMA (coatings Lab., Lyon)

Introduction

Status of the cavity R&D

Out Look

28 May 2013 ECFA2013 DESY

Proposed telescopic, passive, resonant external cavity

Compton at KEK ATF

Polarized e+ by laser Compton Scheme

Ee~1GeV for 10MeV gammas

controllability of polarization

Toward the positron sources —> increase intensity of γ rays

Setup at the KEK-ATF

The Optical Cavity

<u>Main Parameters</u> Circumference:1.68m Finesse:4040(Measured) Power Enhansement:1230

3Diensional 4Mirror Cavity

Optical path

4 mirror cavities are at the ATF

KEK-Hiroshima installed 2011

relatively simple control system employs new feed back scheme LAL-Orsay installed summer 2010

sophisticated control digital PDH feedback

FWHM: 110pm

Issues

Possible thermal effect

(unexpected) losses on mirrors \rightarrow distortion

Profile at the IP

Design: circle

Beam Profile in the cavity

Beam Profile in the cavity

Propagation of the laser light

- Calculation
 - transfer matrix

– Propagation of EM waves in the cavity

• Systematic measurements

• $\varphi = 87.5^{\circ}$, 90, 92.5

Measturemennsof the profiles

		$\phi = 87.5^{\circ}$	$\phi = 90^{\circ}$	$\phi = 92.5^{\circ}$
Major axis (µm)	1	941.4	939.6	937.5
	า	020 7	011 0	939.5
Minor ai still working on it				775.7
				919.9
Angle Relative to 50 1 +1.17				-1.16°
		+0.28°		+35.13°
Major axis		944	937	939
Minor aixs		532	546	507
Angle Relative to 90		-0.9°		-9.1°

Calculation Measured

Deformation of Mirrors

Low loss mirrors are essential to increase power

Cleaning the mirrors

Before

$R = 0.999846 \pm 0.000003$ (Loss : 50ppm)

After

 $R = 0.999864 \pm 0.000003$ (Loss : 30ppm)

Summary

- So far
 - 2.6kW stored w/ enhancement of 1230
 - Highly stable $\Delta L \sim 4 pm$
 - vertical laser size at the IP $13\mu m$
 - 120g/5bunches -> ~2.6 × 10⁸/sec
 - Digital Feedback
- Quantitative understanding
 - Finesse
 - Powers
 - Profile

Future prospect

- Try high reflectivity mirror
 - w/ careful handling
 - Trying 3000~5000 power enhancement this year
 -> more than 10,000 in next a few years
- Low loss mirrors
 - collaboration with NAO (gravitational wave guys)
 - careful investigation of commercial mirrors
 - develop mirrors (substrates) by ourselves?