LC Detector R&D Status and Overview

November 11, 2013 LCWS 2013 Tokyo

Marcel Demarteau Argonne National Laboratory

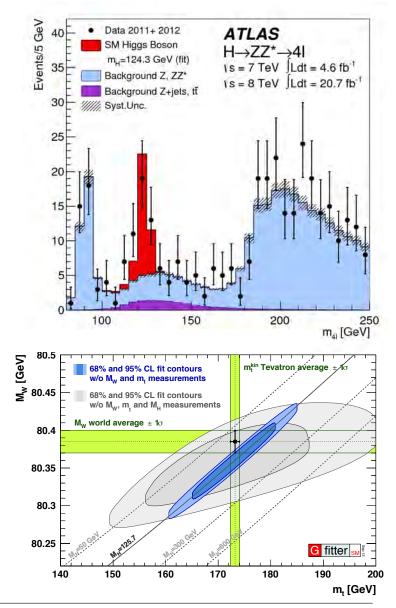
LCWS 20113

November 11-15, 2013

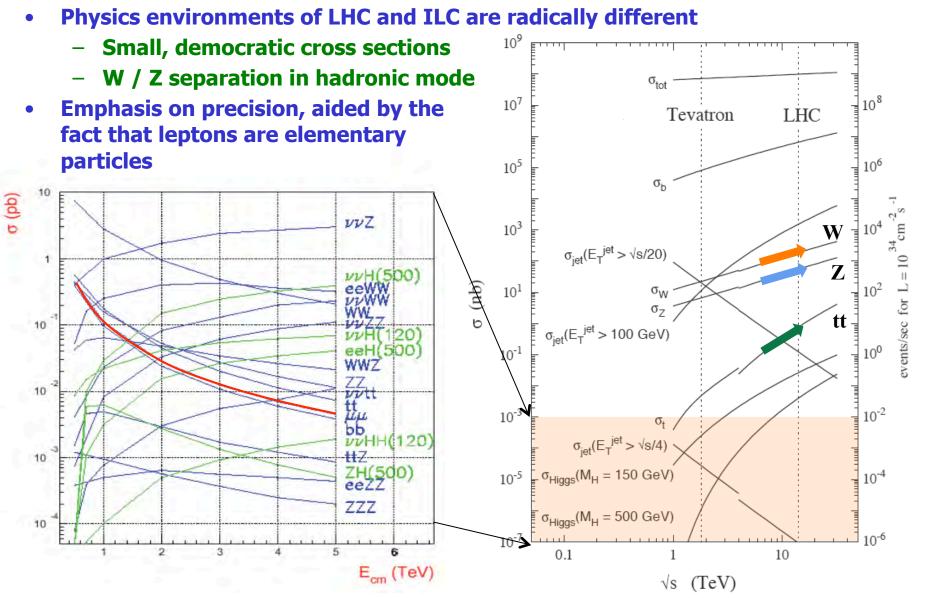
Outline

- The physics drivers
- Status of R&D
 - Vertex detectors
 - Tracking
 - Calorimetry (electromagnetic)
 - Forward calorimetry
- Reflections

Disclaimer:


• Impossible to pay justice to the broad spectrum of ongoing detector R&D; had short notice to prepare; apologies for omissions, all errors are mine

Physics Goals


C.

- The LHC has brought us the Higgs. Now it needs to be explored in its fullest detail
- If there is new physics and it is within the ILC center of mass reach, it will let us unravel the structure of that physics
 - Electroweak Symmetry Breaking
 - Higgs sector(s)
 - Extra symmetries, dimensions, ...
- If no new physics is uncovered at the LHC, precision allows unprecedented probe of SM
 - Uncover cracks in SM
 - Channels missed at the LHC (trigger or signature)

Physics Environments

LCWS 2013, Tokyo, November 11-15, 2013 -- M. Demarteau

backgrounds to SUSY \sim .

 $\widetilde{\mu}$ decay

• The unexpected

۲

Design Challenges

Physics

• Unambiguous identification of multi-jet decays of Z's, W's, top, H's, χ 's,

ZHH

• Higgs recoil mass and SUSY decay endpoint measurements

 $ZH \rightarrow \ell^+ \ell^- X$

• Full flavor identification and quark charge determination for heavy quarks

Full hermiticity to identify and measure

 $ZH, H \rightarrow c\bar{c}, b\bar{b}, \dots$

missing energy and eliminate SM

Design Challenges

Physics

 Unambiguous identification of multi-jet decays of Z's, W's, top, H's, χ's,

ZHH

 Higgs recoil mass and SUSY decay endpoint measurements

 $ZH \rightarrow \ell^+ \ell^- X$

- Full flavor identification and quark charge determination for heavy quarks $ZH, H \rightarrow c\bar{c}, b\bar{b}, ...$
- Full hermiticity to identify and measure missing energy and eliminate SM backgrounds to SUSY

 $\widetilde{\mu}$ decay

• The unexpected

Detector

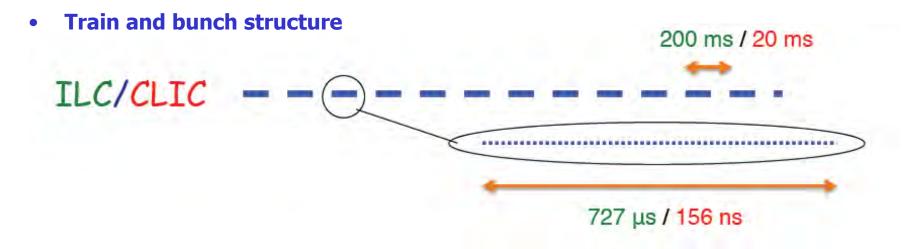
 Demands unprecedented jet energy resolution

$$\sigma_{E_{jet}} / E_{jet} = 3\%$$

• Pushes tracker momentum resolution

$$\sigma(1/p_T) = 5 \times 10^{-5} (GeV^{-1})$$

• Demands superb impact parameter resolution


 $\sigma_{r\phi} \approx \sigma_{rz} \approx 5 \oplus 10/(p \sin^{3/2} \vartheta)$

• Instrumented forward region

 $\Omega=\!4\pi$

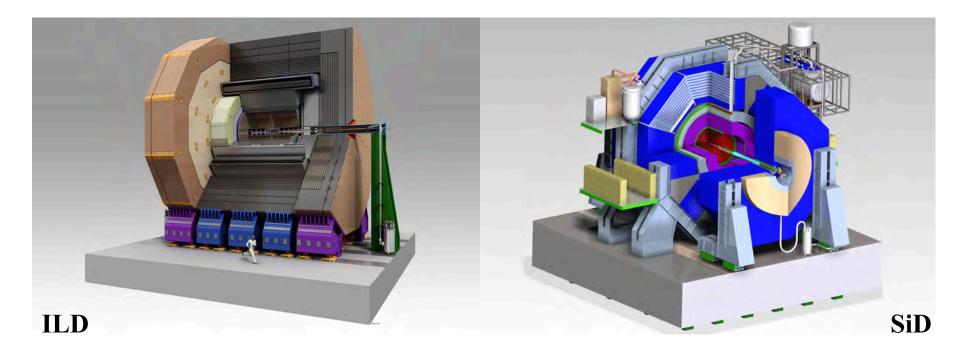
• Smarts

Machine Challenges

	ILC at 500 GeV	CLIC at 3 TeV	•
L (cm ⁻² s ⁻¹)	2x10 ³⁴	6×10 ³⁴	
BX separation	554 ns	0.5 ns	
#BX / train	1312	312	
Train duration	727 μs	156 ns	•
Train repetition rate	5 Hz	50 Hz	
Duty cycle	0.36%	0.00078%	
$\sigma_{\rm x}$ / $\sigma_{\rm y}$ (nm)	474 / 6	≈ 45 / 1	
σ _z (μm)	300	44	

ILC

 Long trains, low rep. rate, long bunch crossing, modest transverse bunch size


• CLIC

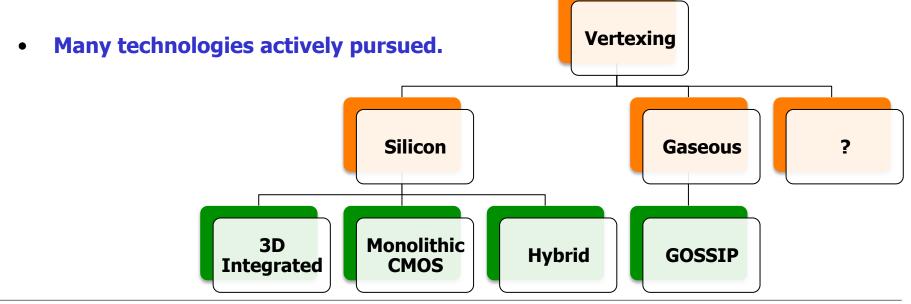
 Short trains, higher rep. rate, very short bunch crossing, very small transverse bunch size

Detector Concepts

• Two detectors have completed a Detailed Baseline Design

Detector Concepts

- Two detectors have completed a Detailed Baseline Design
- With two fraternal twins for CLIC who have completed a Conceptual Design
- Most of the R&D is carried out within the context of these concepts



Vertex Detector

Research Thrusts

- Precision vertexing/tracking/imaging ideally requires detectors that have
 - zero mass: transparency of $\sim 0.1\% X_0$
 - zero power: allow for air cooling (< 50 W)
 - zero dead zones, zero dead time
 - zero effective occupancy: integration over few bunches
 - zero noise susceptibility: EMI immune
 - 1/zero precision: spacepoint < $5\mu m$, impact parameter $5\mu m \oplus 10\mu m/(p \sin^{3/2} \theta)$)
 - 1/zero pattern recognition capability: many layers close to IP

LCWS 2013, Tokyo, November 11-15, 2013 -- M. Demarteau

Technologies

	Monolithic CMOS	3D-integrated	Hybrid pixel
Examples	DEPFET, FPCCD, MAPS, HV-CMOS	SOI, MIT-LL, Tezzaron, Ziptronix	Timepix3/CLICpix
Technology	Specialised HEP processes, r/o and sensors integrated	Customized niche industry processes, high density interconnects btw. tiers	Industry standard processes for readout; depleted high-res planar or 3D sensors
Interconnect	Not needed	SLID, Micro bump bonding, Cu pillars	
granularity	down to 5 µm pixel size		~25 µm pixel size
Material budget	~50 µm total thickness achieveable		~50 µm sensor + ~50 µm r/o
Depletion layer	partial	partial or full	full → large+fast signals
timing	Coarse (integrating sensor)	Coarse or fast, depending on implementation	Fast sparsified readout, ~ns time slicing possible

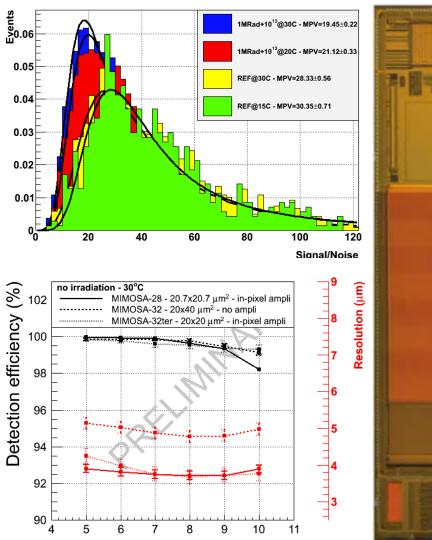
From D. Dannheim

- Some technologies already being deployed in various experiments and sciences
 - Monolithic: STAR at RHIC, ALICE at LHC, DEPFET at BELLE-II
 - Hybrid: CMS and ATLAS at LHC
 - 3D at NSLS II at BNL

Fine Pixel CCD Technology

- FP-CCD sensor and readout being developed
- Small Prototype
- Large prototype (real size for inner layer)
 - 62.4x12.3mm² image area
 - 8ch/chip with several pixel sizes:
 - 4chx6um, 2chx8um, 2chx12um
 - Large area is achieved through stitching
 - Horizontal shift registers for 6μm² do not work properly
 - Plan to test in JPARC beam in 2014
- Current emphasis on cooling:
 - CCD to be operated at -40 °C
 - Power consumption ~50W
 - Building CO2 cooling system for tests

Pixel size (in)	Pixel size (out)	# of ch/chip (in)	# of ch/chip (out)		Power consumption
5 um	5 um	28	56	7392	111 W
5 um	10 um	15	15	2280	34 W



CMOS Pixel Sensor (CPS)

- Early devices (Mimosa 26/28) in 350nm process
- New devices in 180nm process
 - Allows for faster & smarter pixels
 - Deeper sensitive volume: 18 to 40 µm thick
- Mimosa-32(ter)
 - Pixel pitch 20x20μm²
 - In pixel amplification & CDS
 - Irradiation: 1 Mrad + 10¹³ n_{eq}/cm²
 - Excellent S/N ~ 20
 - Hit resolution ~ $5\mu m$

Threshold / noise

Signal/Noise ratio for P25

LCWS 2013, Tokyo, November 11-15, 2013 -- M. Demarteau

2D zero-suppression logic

- clusters encoded on 4x5 pixel window
- In-pixel amplification + CDS
- **In-pixel 3-bits ADC**

Intermediate steps

MISTRAL

- Pixel 22x33 µm2
- **Column-level discriminators**
- Multi-row read-out \rightarrow 30 µs _
- Power $< 350 \text{ mW/cm}^2$

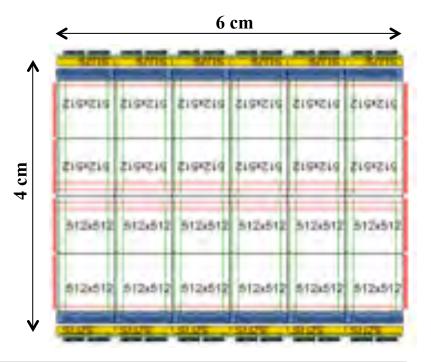
ASTRAL

- **Pixel 22x33 µm²**
- **Pixel-level discriminator**
- Read-out \rightarrow 15 µs _
- Power $< 200 \text{ mW/cm}^2$

MIMAIDA

Sensitive area = 4x6 cm²

3 cm

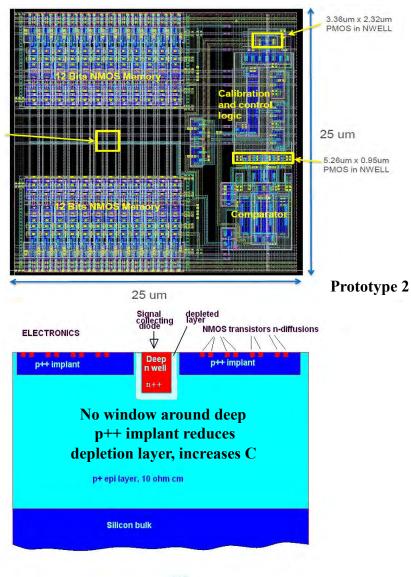

Picel matrix

Noel matrix

0-suppression stage

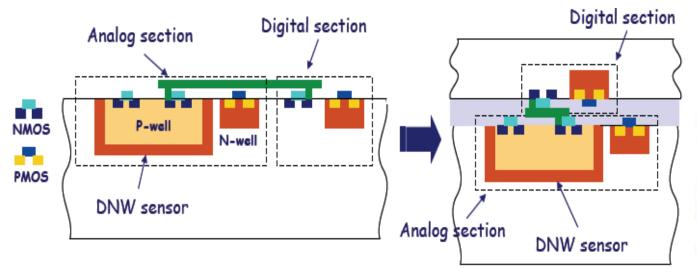
Đ

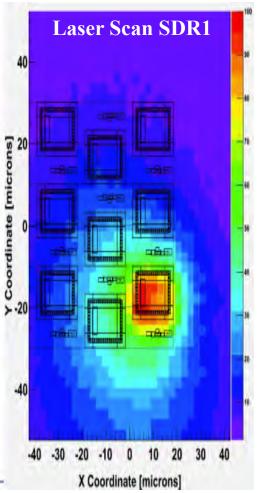
Mistral


Pixel matrix

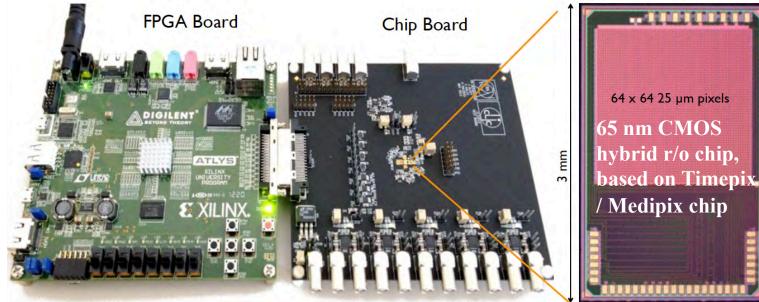
G-suppression stage

Chronopixel


- Chronopixel design provides for single bunch-crossing time stamping
 - When signal exceeds threshold, time stamp provided by 14 bit bus
 - Comparator threshold adjusted for all pixels
- Prototype 1
 - 50x50 μ m² pixels, 180nm TSMC
- Prototype 2
 - 25x25 μ m² pixels, 90nm TSMC
- Results:
 - BX time stamping works (300 ns period)
 - Readout between trains demonstrated (sparse readout)
 - Pulsed power (2 200 ms ON/OFF)
 - Comparator offset spread factor 5 worse than prototype 1
 - Sensor capacitance larger than expected

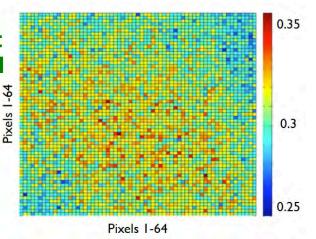

MAPS in 3D

- Combine MAPS with 3D silicon integration
 - retain analogue section within charge sensing pixel, move digital section to separate layer



- Multi-project-wafer run through Tezzaron
 - Fully functional 3D chips (SDR1)
 - Two tiers, 20x20 μm² pixels in 240x256 matrix
 - Good S/N and radiation hardness being verfied
 - Exploring design with ~200 ns per-pixel time stamp

Hybrid Technology



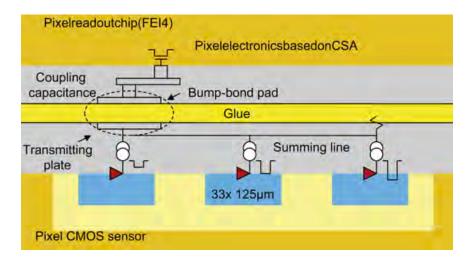
• CLICPix:

- 64 x 64 pixel matrix in 65 nm technology,
- 25 µm pixel pitch, simultaneous measurement Time of Arrival (TOA) and Time over Threshold (TOT), power pulsing, data compression

Time Over Threshold gain distribution

- Uniform gain across the whole matrix
- Gain variation is 4.2% r.m.s. (for nominal feedback current

1.85 mm

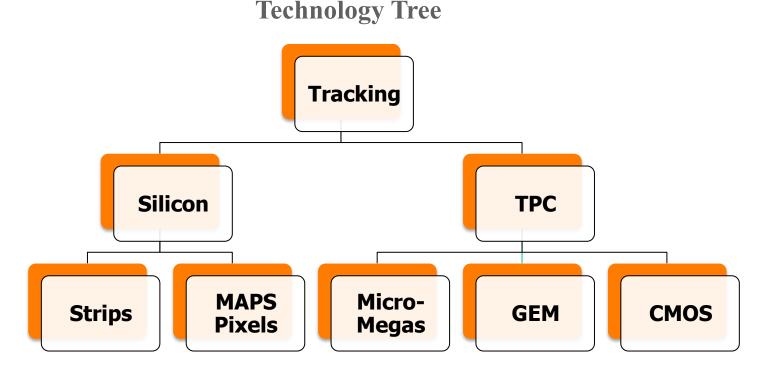

LCWS 2013, Tokyo, November 11-15, 2013 -- M. Demarteau

Progress in low-mass mechanical design and cooling

- Double-sided Mimosa ladder developed with 0.35% X₀

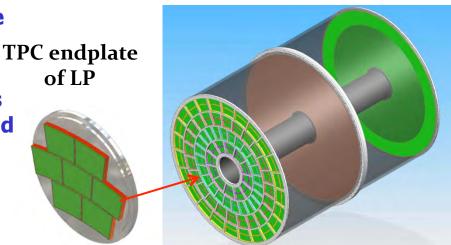
Other Technologies

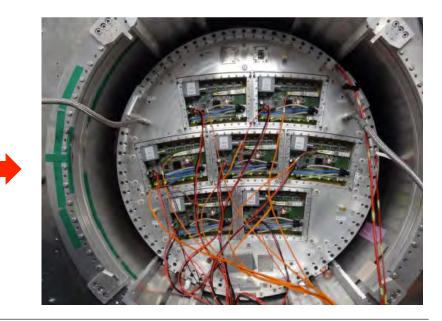
- Capacitive Coupled Pixel Detector
 - HV-CMOS chip as sensor that amplifies signal, which is capacitively coupled to readout through, for example, a layer of glue (no bump bonding)



Tracking

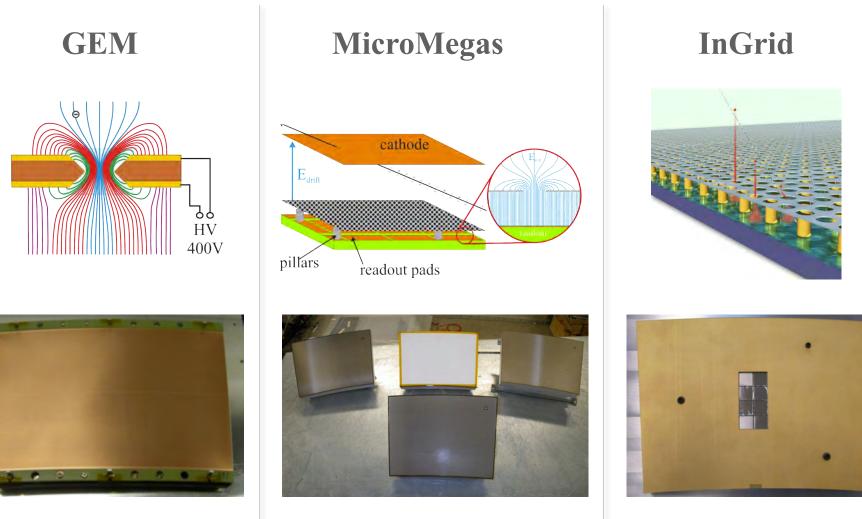
Research Thrusts


- Precision tracking to enable high resolution calorimetric measurements
 - Low mass
 - Unprecedented momentum resolution: $\sigma(1/p_T) = 5 \times 10^{-5} (GeV^{-1})$
 - Good double track separation: \sim 150 μ m
 - Hermetic, uniform coverage
 - Excellent pattern recognition capability



TPC R&D

- Focus of LC TPC collaboration is on the Large Prototype (LP), inside a 1.2T superconducting solenoid
- Endplate was designed that resembles cutout of final endplate, which can hold 7 identical modules
- Different backframe heights to allow different gas amplification stages



Technologies

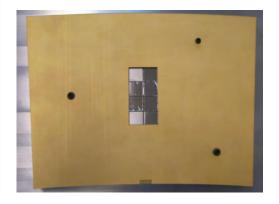
Two variants: Asian and German

Technologies

GEM

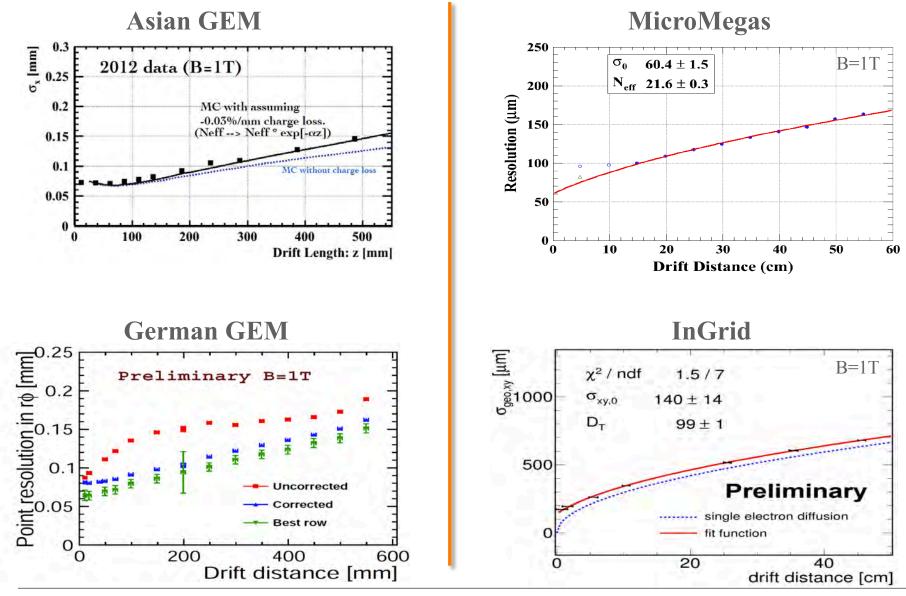
- Asian GEM module:
 - 2 GEMs
 - 1.2x5.4 mm² pads
 - 5152 channels/module
- DESY GEM module:
 - 3 GEMs
 - **1.26x5.85mm² pads**
 - 4829 channels/module

MicroMegas


- MicroMegas module:
 - 3x7 mm² pads
 - 24 rows with 72 pads
 - 1728 channels/module
 - Testing different resistive foils

InGrid

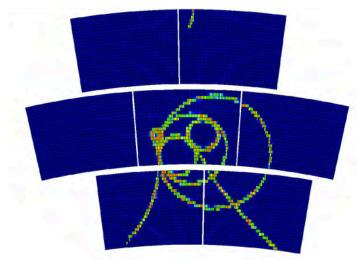
- InGrid module:
 - 8 integrated MicroMegas grids on TimePix chips
 - 65 000 digital pixels (55x55 μm²)
 - Time and Time over Threshold (TOT) measurement

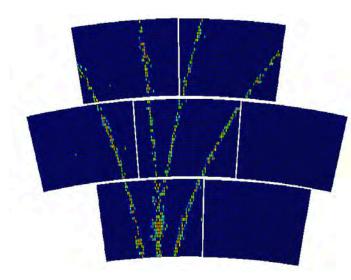


Results

TPC Readout

	Readout	Pad Size	Electronics	Groups
	Micromegas (Resistive anode)	(~ 3 × 7 mm² Pad)	AFTER	Saclay-Carleton
MPGDs	Double GEMs (Laser-etched)	$(~1 \times 6 \text{ mm}^2)$	ALTRO	Asia
	Triple GEMs (wet- etched)	Pad)		DESY

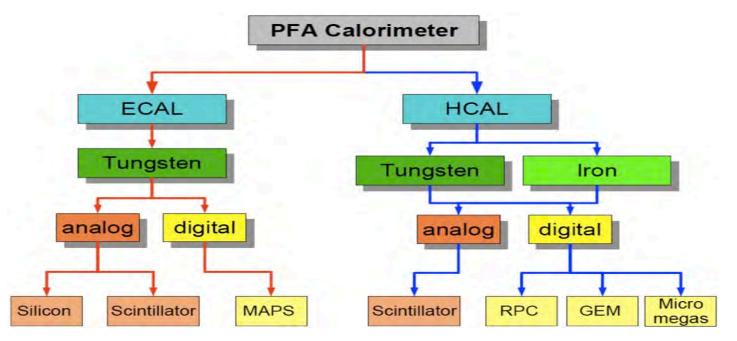

From: Paul Colas

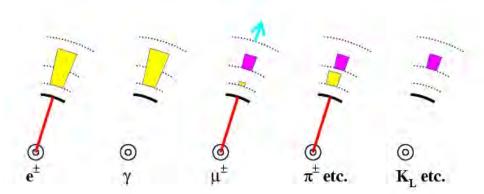

- Development of the integrated electronics based on the S-Altro chip
 - 16 channel ASIC with integrated ADC
- Possible future development:
 - ALICE developing the SAMPA chip for TPC and Muon system readout
 - VFAT3 and GdSP chip development for CMS

Results and Plans

C.

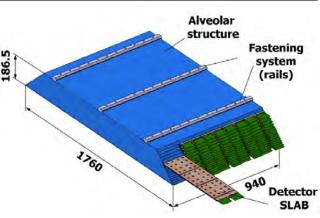
- All technologies have been operated reliably in the DESY test beam.
- A similar transverse spatial resolution was measured for all different pad-based modules (GEM and MicroMegas)
- Resolution of 80 µm at 2m drift in B=3.5 T obtained and possibly to be improved upon
- Performance of the InGrid modules is very preliminary; Track finding and fitting is challenging and new algorithms have to be developed for dealing with large numbers of track points
- Proof of Pixel based readout of large area coverage is pending. Plan to build a completely covered module next year.
- All technologies are suffering from field distortions at the module edges.

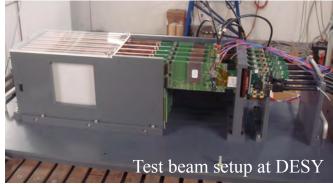


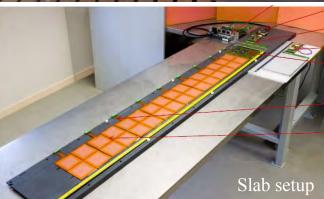

LCWS 2013, Tokyo, November 11-15, 2013 -- M. Demarteau

Research Thrust

- Calorimetry based on Particle Flow
 - Reduce the function of the calorimeter to measuring the energy of neutrals only
 - Key word is granularity !

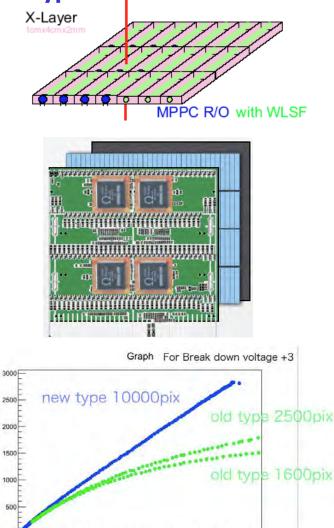





Silicon-W ECAL

C.

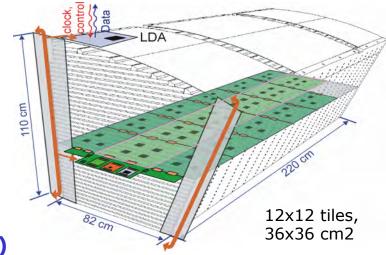
- Developing a Technological Prototype:
 - 30 layers of 176 cm long W slabs in 20cm depth, with 8 Active Sensor Units (ASUs) per slab
 - ASU = ASIC + PCB + Si sensor
 - Sensor: 9x9cm², 16x16 pixels of 5.5x5.5mm²
 - ECAL ~100 M channels
- Test beam of partial modules at DESY
 - Power pulsing successfully tested
 - ILC extrapolation = 2.5 kW for full ECAL
- Full slab being assembled on the bench
 - Thermal tolerances are demanding
 - Mechanical tolerances are demanding
- Schedule
 - New sensors ordered, without guard rings
 - Bench tests continuing with possible beam test

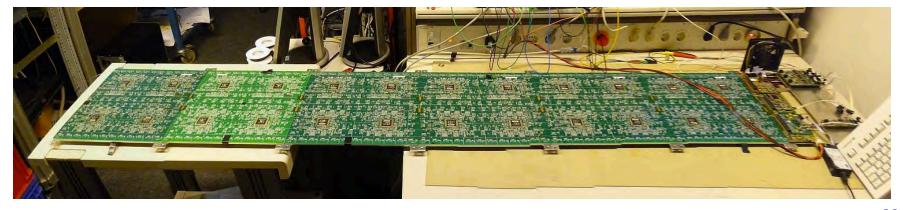


Scintillator ECAL

- Scintillator ECAL also developing Technological Prototype
 - Scintillator strips : 5mm x 45mm x 2mm
 - Readout MPPC directly
 - Embedded read out ASIC layer (SPIROC2b)
- Taken test beam data
 - Good MIP signal but not completely separated from noise
- Moving towards new Hamamatsu MPPCs
 - 10,000 pixels/1x1 mm²
 10 μm pitch
 - Improve dynamic range and linearity
- Work also beginning on development of a "hybrid" ECAL: scintillator + silicon
 - ECAL is the most expensive sub-detector

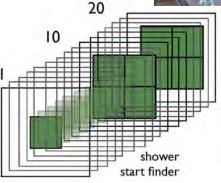
00 1500 2000 2500 3000 3

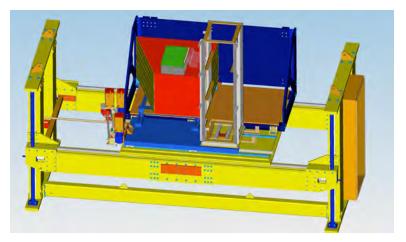

Incident photon intensity [photoelectron on MPPC]


MPPC output[p.e.]

Analogue HCAL

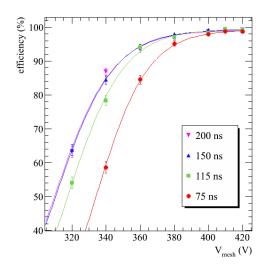
- Building 2nd generation prototype with fully integrated readout
 - 48 layers, 220 cm long, 135 cm deep
 - 3x3 cm² scintillator tiles with SiPMs
 - Integrated electronics (SPIROC chip)
 - LED SiPM calibration
 - Power-pulsing
 - Active layer thickness of 5.4 mm
- Successful operation of a slab of full ILC module length (6 readout boards, 2.2 m long)
 - Very good signal quality



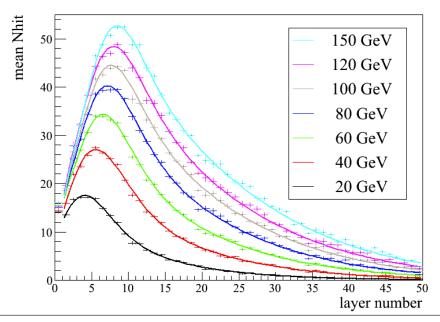


AHCAL Test Beam Plans

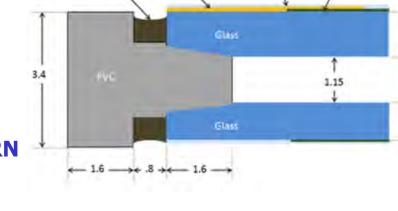
- 2013-14:
 - EM stack, 10-15 layers
 - ~200 channels
- 2015-16:
 - Hadron stack with shower start finder, 20-30 HBUs, ~ 4000 ch.
- 2017-18:
 - Hadron prototype
 - 20-40 layers, 10-20,000 ch.
- Gradual SiPM and tile technology down-select
- Exercise mass production and QC procedures



Semi-Digital HCAL: MicroMegas



- Four 1m² MicroMegas chambers built and tested with SD-HCAL readout electronics with three thresholds
- Tested Stand-alone
 - Muon beam, efficiency tests
- Integrated into a 50-layer calorimeter at CERN
 - Measured longitudinal profiles
 - Response and linearity


Pion shower profile LOW THRESHOLD - Micromegas in RPC-SDHCAL

LCWS 2013, Tokyo, November 11-15, 2013 -- M. Demarteau

Digital HCAL: RPC

- Digital hadron calorimetry based on glass RPCs with 1x1 cm² readout pads
- Large scale prototype built
 - 350,000 channels DHCAL + 120,000 channels for Tail Catcher
 - 10,000 DCAL III ASICs
 - 205 RPCs, 337 Readout boards
- Successfully tested at Fermilab and CERN
 - Fermilab tests with ECAL
 - CERN tests with W absorber

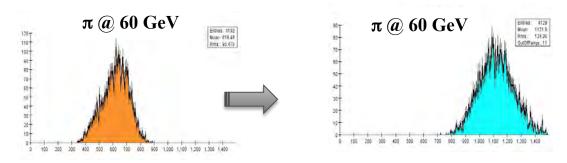
Double-sided tape

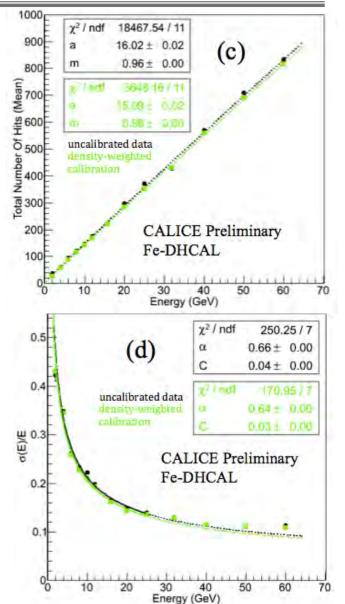
Epoxy

Mylar

Resistive paint

1.15

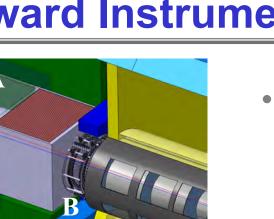

0.85

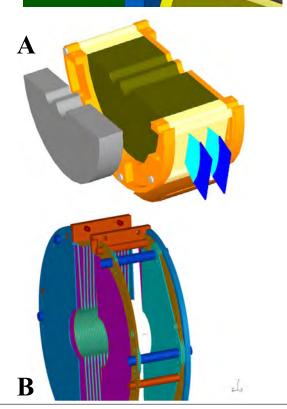

C.

Digital HCAL: RPC

- Linearity of pion response: fit to aE^m
 - Density- weighted calibration; calibration highly non-trivial
 - a=15.09, m=0.98
 - 1 2% saturation (in agreement with expectation)
 - Proof of digital calorimetry
- Energy resolution fit (Fe)
 - C=0.33, S=0.64/√GeV
 - Monte Carlo prediction of $58\%/\sqrt{E}$ with negligible constant term

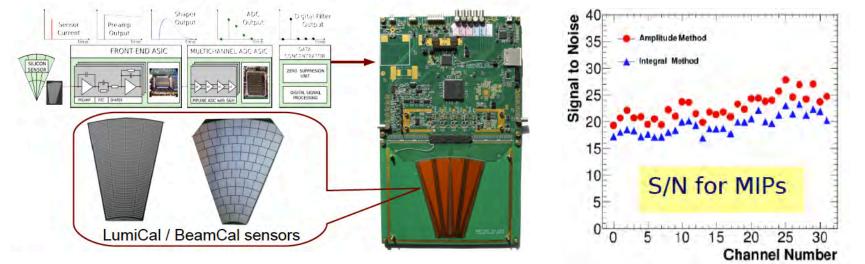
Resolution Gaussian after calibration



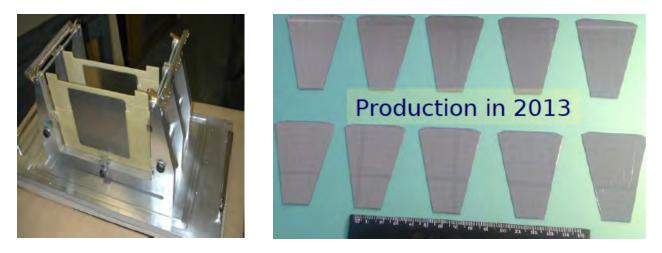

Forward Calorimetry

Forward Instrumentation

 Precision physics relies heavily on forward instrumentation



- Beamcal (+ pair monitor): Fast luminosity estimate (bunch-by-bunch)
 - Beam parameter estimation
 - Fast feedback to the machine
 - Hermeticity & Low angle electron tagging
- Luminosity monitor: Precise measurement of luminosity
 - 10⁻³ at ILC
 - Hermeticity
 - Low angle physics

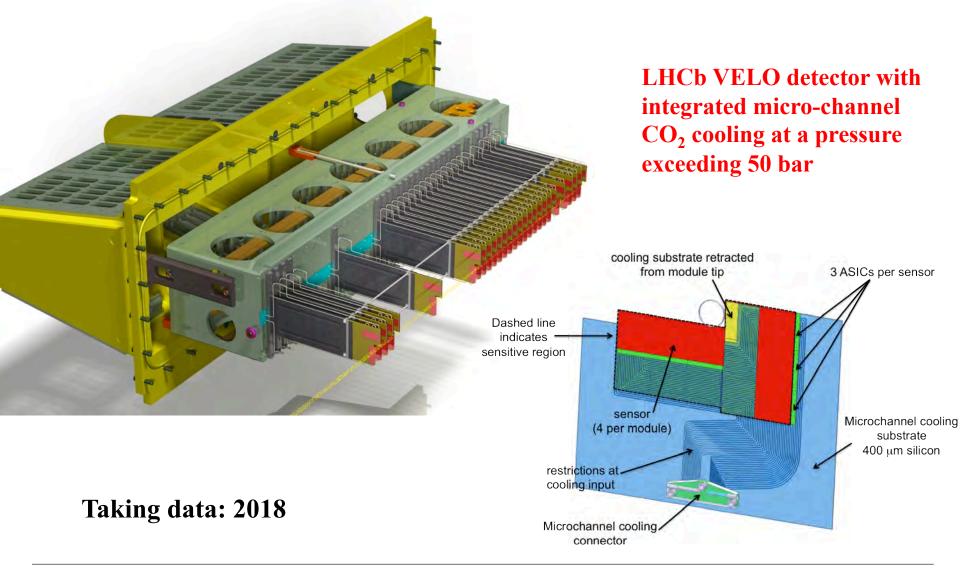

FCAL Beam Tests

Completed test beam

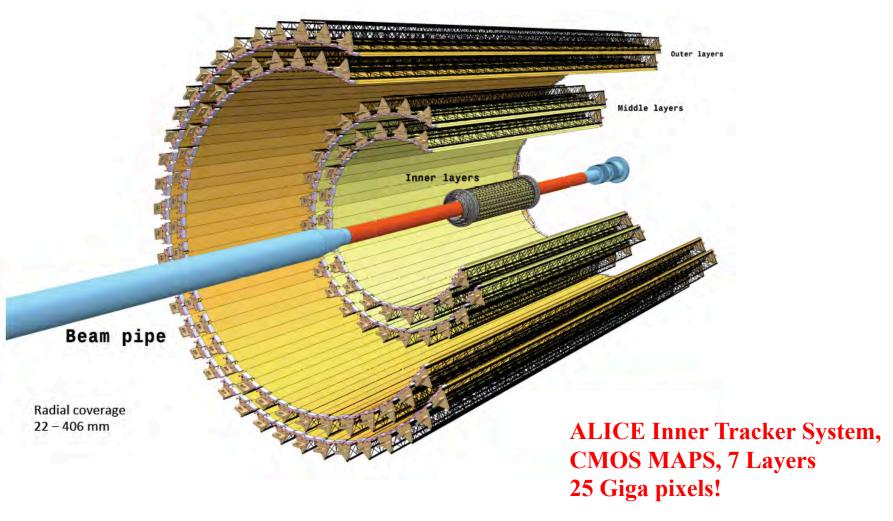
Planned test beam

Production of sensors for 30 BeamCal layers

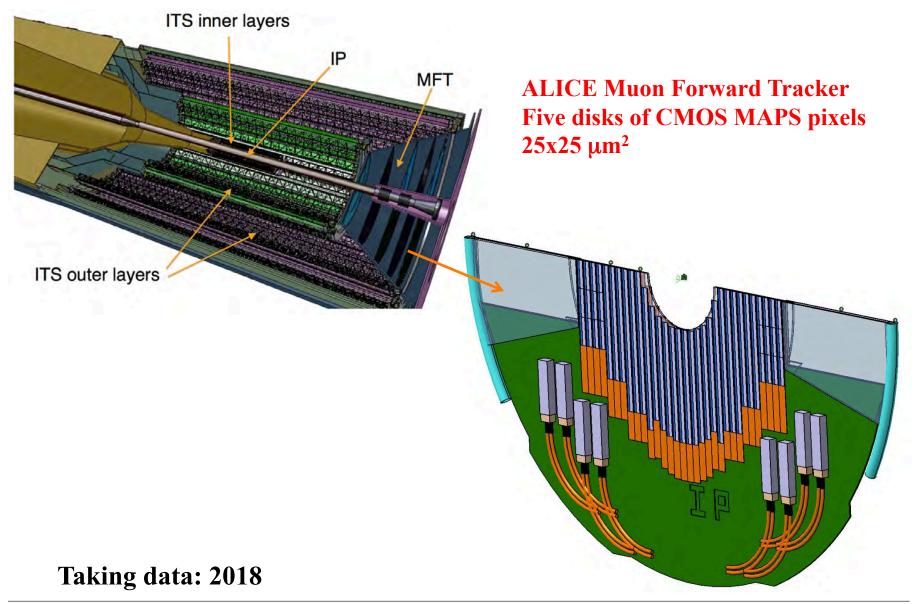
Test with new readout and development of alignment system

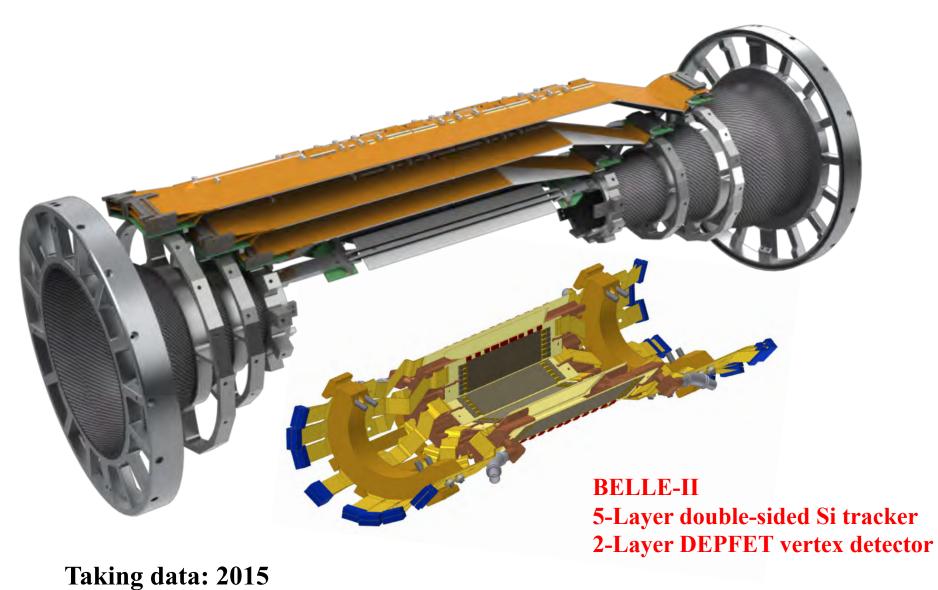


Observations


LCWS 2013, Tokyo, November 11-15, 2013 -- M. Demarteau

• There is a lot of cutting-edge development going on by other experiments




Taking data: 2018

LCWS 2013, Tokyo, November 11-15, 2013 -- M. Demarteau

Closing

- The LC Detector Community has mounted a very impressive detector research program with very impressive results over a short period with relatively few resources.
- The community is post-DBD, but not yet in the project era.
- There are many ambitious projects outside the LC community with more imminent physics results; there has been good synergy.
- At the same time, there is going to be big pressure on the detector community in the near future, both in terms of human and material resources
 - LHC upgrades
 - Long Baseline Neutrino Program
- A careful bridging of the detector development to the project phase will be of significant importance.