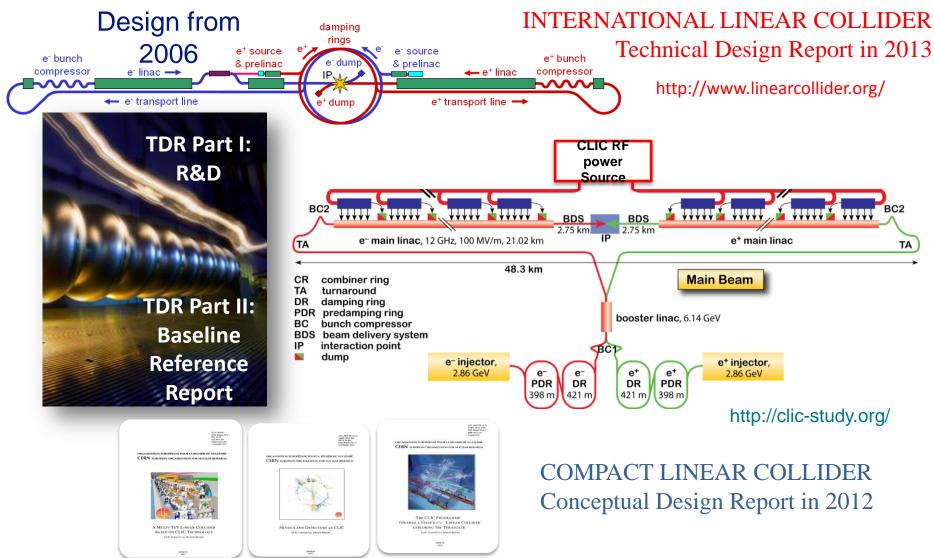
LC Beam Diagnostics Key Issues – Existing and Future Tests in Test Facilities –

Thibaut Lefevre Manfred Wendt CERN

Outline


- Linear Collider Projects & Beam Test Facilities
 - Beam Diagnostics Challenges
- Beam Position Monitors based on Cavities
- Bunch Length Monitoring based on Electro-Optical Sampling (EOS)
- Beam Size / Emittance Measurements
 - Laser Wire Scanner
 - Optical Transition Radiation
 - Optical Diffraction Radiation
- Conclusions & Perspectives

There are many other BI topics worth to be discussed, this is just our personal selection

Linear Collider Projects

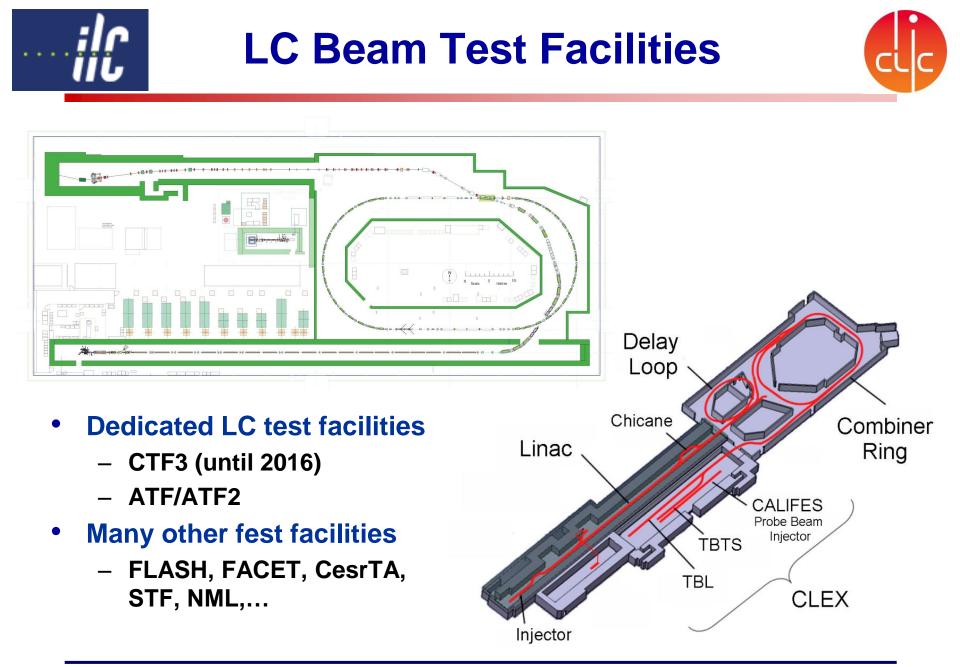
LC Beam Parameters

Parameter		ILC-nom	CLIC-1	CLIC-3
E _{CM}	GeV	500	500	3000
L	10 ³⁴ cm ⁻¹ s ⁻¹	2.0	2.3	5.9
Ν	10 ⁹	20	6.8	3.7
σ_x / σ_y (IP)	nm	474 / 5.9	200 / 2.6	40 / 1
σ_{z} (IP)	μm	300	72	44
n _{bunch}		1312	354	312
f _{rep}	Hz	5	50	50
Δt_{bunch}	ns	554	0.5	0.5

- Low emittance preservation!
 - High resolution, reproducible beam diagnostics
- ILC / CLIC: Different beam formatting
 - Temporal / spatial resolution requirements
 - Timing, triggering, dynamic range

Quantity of LC Beam Instruments

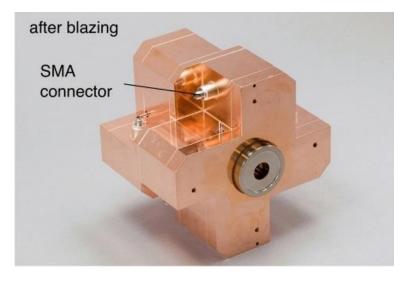
BI Type	ILC-nom (RDR)	CLIC-3-DB	CLIC-3-MB
Intensity	40	278	184
Position	4478	46054	7187
Size	142	800	148
Energy (spread)	13 (13)	210 (210)	73 (23)
Bunch length	13	312	75
Beam loss / halo	1440	45950	7790
Beam phase	14	208	96
Polarization	?		17
Tune	4		6
Luminosity	2(?)		2


- Impressive quantities!
 - Calls for well though through engineering and optimization

LC Beam Diagnostics Challenges

- Requirements and quantities for both machines are similar
 - Most BI hardware is located in the tunnel
 - ➤ radiation, maintenance
 - Large quantities, numbers scale with beam energy (tunnel length)
 - > CLIC-DB needs additional beam instruments, but with relaxed demands
 - > Still need to optimize designs for costs vs. required performance

Additional BI challenges


- Measurement of small beam size (emittance), non-interceptive
 - $> \sim 1 \mu m$ spatial resolution for transverse profile monitors
- Measurement of short bunch length
 - ~20fs time resolution for longitudinal profile monitors
- Conversation of low emittance beam over long distances
 - Beam alignment (golden orbit) relies on high resolution & accuracy BPMs
 - Wakefield effects of cavity BPMs need to be further investigated
- ILC SCRF segmentation for warm beam diagnostics?
 - XFEL may give some hints

High Resolution BPMs

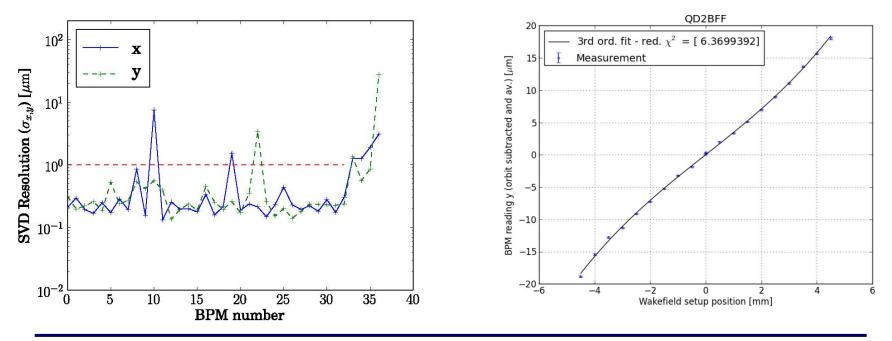
IP BPM (ATF2)

- Aperture: 6mm
- Resolution: 8.72+-0.28(stat)+-0.35(sys) nm
 @ 0.7x10¹⁰ electrons/bunch,
 @ 5 um dynamic range
 - @ 5 µm dynamic range
 - Y. Inoue et.al., Phys. Rev. ST-AB 11, 62801 (2008)

Collaboration KNU / PAL / KEK / RHUL / SLAC

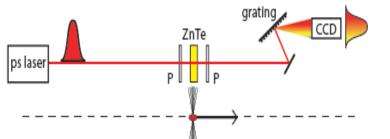
MB BPM (CTF3)

- Aperture: 8mm
- Operating frequency: 15 GHz
- Anticipated resolution: 50 nm, 50 ns
 - > To be tested!



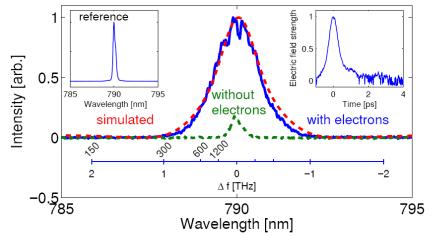
S. Boogert, F. Cullinan, A. Lunin, A. Lyapin, S. Smith, L. Soby, J. Towler, M Wendt

- Nanometer resolution cavity BPMs have been successfully developed at ATF2 over the last 15 years
 - Spin-off to FEL linacs (LCLS, FERMI, XFEL, FLASH, SwissFEL,...)
 - Miniworkshop on cavity BPM systems following the IBIC2013
- Need to study the impact on the cavity BPM wakepotential
 - Wakefield kick effect has been measured at ATF2



November 14, 2013 – LC Beam Diagnostics Key Issues (T. Lefevre, M. Wendt) – LCWS 2013

EOS Bunch Length Monitors



EOS-spectral up-conversion techniques

Phys Rev Lett **99**, 164801 (2007) Phys. Rev. ST, **12**, 032802 (2009)

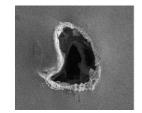
- Convert far...mid-IR spectrum to optical wavelength
- Bandwidth reduction 10µm...1mm -> 740...800nm

- Laser-generated THz pulses as mimic of electron bunch (Daresbury)
- Plan for beam tests at test facilities with short bunches (PSI)
- EOS detection solution based on advance materials
 - Very high bandwidth material (phonon resonances in the far THz)
 - Materials, Photonics & Smart Systems (PAPS) Group at Dundee
 - Fabrication & applications of nanocomposites

Science & Technology Facilities Council

University of Dundee W. A. Gillespie, D. A. Walsh, S. P. Jamison, R. Pan, T. Lefevre

- High resolution is required from DR to IP
 - Large beam energy range (2.4GeV -> 1.5TeV)
 - Large quantities!
 - Flat beams ($\sigma_x >> \sigma_y$)
- ILC
 CLIC MB
 CLIC DB

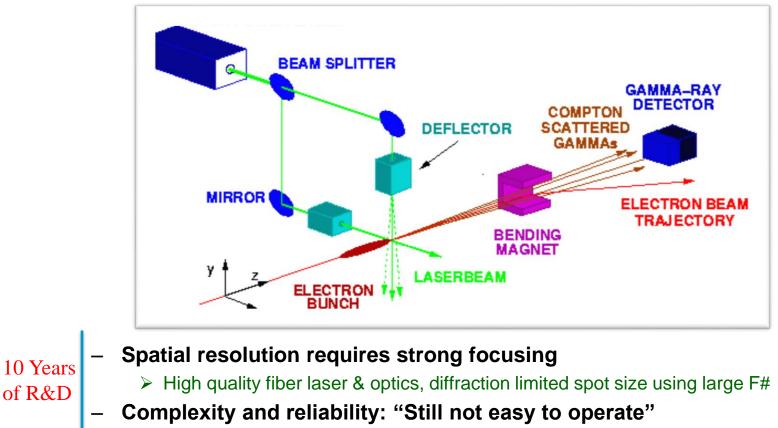

 Beam Charge (nC)
 7875
 190
 1.2 10⁶

 Hor. Emittance (nm.rad)
 10⁴
 660
 10⁸

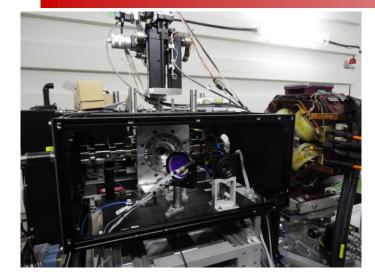
 Ver. Emittance (nm.rad)
 40
 20
 10⁸

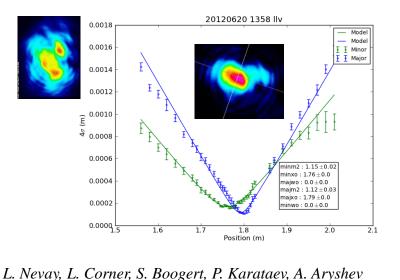
- Small beam size
- High beam charge

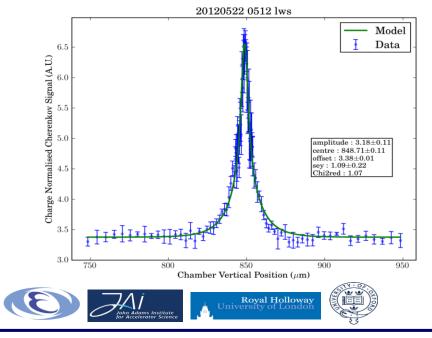
<u>High Charge Densities</u> > 10¹⁰ nC/cm² Thermal limit for 'best' screen materials (C, Be, SiC) is 10⁶ nC/cm²



- Intercepting devices limited to single (or few) bunch (no micro-bunching instabilities assumed!)
- Strong need for non-intercepting devices
- Require two different systems to cover the large beam intensity dynamic range (commissioning and production beams)


- High resolution non-interceptive transverse beam profile measurement
 - Goals to detect 1µm beam size (resolution was demonstrated at SLC)
 - Small Compton scattering cross section -> High power laser (10MW)




Laser Wire Scanner

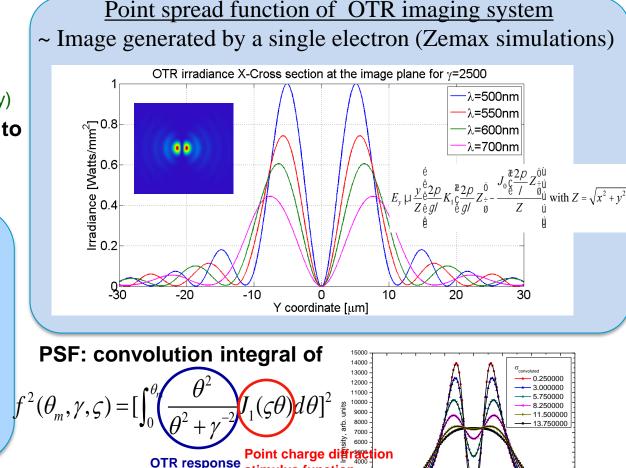
- ATF2 Laser-wire @ KEK in 2012
 - LW moved during 2011 shutdown
 - e⁻ optics: V=1μm x H=200μm
 - Reduced background
 - Detailed investigation of the laser focus
 - Further analysis in progress!

• Study of a cheaper, and easier to manage alternative to the LWS!

- **Plan: Make use of Transition and Diffraction Radiation!**
 - OTR for single bunch of low charge beams
 - Anyway foreseen to use OTR screens during machine commissioning with lower charge, high emittance beams
 - ODR for observation of the full bunch train

- Required R&D:
 - Development of a high resolution TR monitor with µm resolution
 - Development of a high resolution DR monitor with similar resolution

High-Rez OTR Measurements



- Charged particle passing a media boundary
 - dielectric screen (high reflectivity)
- Interceptive method limited to single bunches
- Simple, cheap & reliable!

Charged Particle

Polarizer

Lens

Considering the physical beam size, the resulting image on the camera is the convolution of the beam spatial distribution with the optical system PSF

Camera

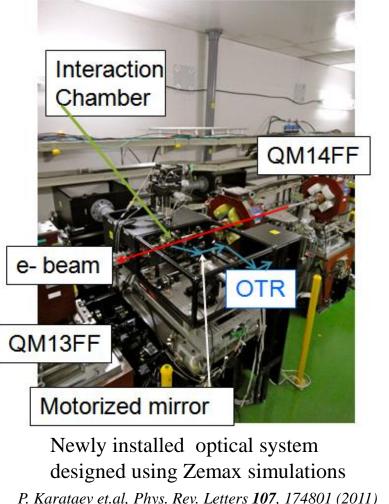
DTR screen

-20 0 20 40 OTR vertical projection, um

A. Aryshev, N. Terunuma, J. Urakawa, S. Boogert, P. Karataev, L. Nevay, S. Mazzoni, T. Lefevre, B. Bolzon

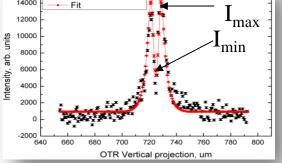
stimulus function3000

November 14, 2013 – LC Beam Diagnostics Key Issues (T. Lefevre, M. Wendt) – LCWS 2013


Page 15

High-Rez OTR Measurements

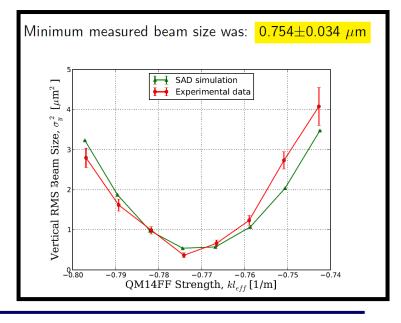
Vertical projection



ATF2 OTR PSF @ KEK in 2013

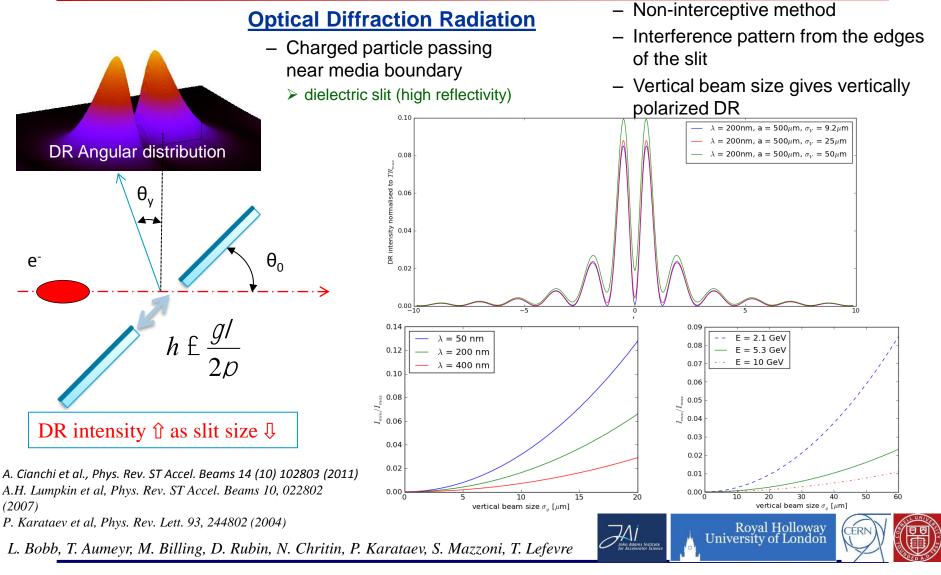
P. Karataev et.al, Phys. Rev. Letters 107, 174801 (2011) A. Aryshev, et.al, Journal of Physics: Conference Series 236 (2010) 012008

November 14, 2013 – LC Beam Diagnostics Key Issues (T. Lefevre, M. Wendt) – LCWS 2013



Experimental data

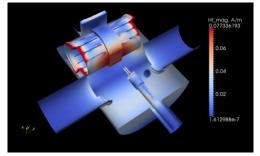
$$f(x) = a + \frac{b}{1 + [c(x - \Delta x)]^4} \left[1 - e^{-2c^2 \sigma^2} \cos[c(x - \Delta x)] \right]$$


1600

14000

Page 16

Diffraction Radiation for Beam Size


Page 17

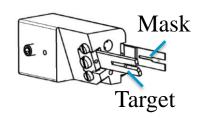
Diffraction Radiation for Beam Size

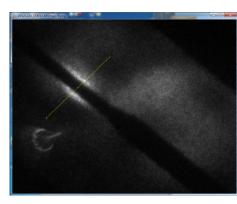
Test foreseen on Cornell Electron Storage Ring in 2012/13

H-field surface tang complex magnitude (Loss map) Mode Fr = 1.19 GHz, Q = 3309, Ploss = 0.075 W



Total power loss for single bunch = 0.6 W


SR				
Ring	E (GeV)	σ _H (μm)	$\sigma_V(\mu m)$	
U	2.1	320	~9.2	
	5.3	2500	~65	


Target Assembly

- SiC Mask to suppress background from Synchrotron radiation
- Si Target for Diffraction Radiation: $\lambda/100$ roughness, $\lambda/10$ coplanarity

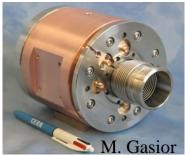
- First DR images obtained in April 2013
- Next test in December 2013

- LC beam diagnostics is a very active R&D area, relying of large collaborations
- No fundamental feasibility issues, but many technical challenges in a wide range of disciplines
 - Electronics, RF, sensors, radiation hardness, lasers & optics, high precision manufacturing & polishing,...
- Baseline choices have been made, but R&D is going on in many areas
 - Good chances to replace LWS by OTR/ODR in may locations costs and simplicity
 - Development of EOS-based bunch length monitor to replace costly, invasive RF deflector
 - Do cavity BPMs play a role on the impedance budget of the linac?
 - Do we need a new design?
 - EMC issues in the CLIC main linac?
 - > Observation of EMI noise from the drive beam limits resolution of the MB diagnostics!
 - No R&D without test facilities!!
- Large amount of devices to be build and operate
 - Far beyond what was already realized in our field
 - Realistic integration of beam instruments in the machine layout
 - The delve lies in the details!
 - Radiation hardness and operational / maintenance aspects need to be investigated as well!

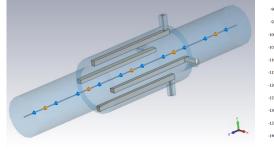
Thanks all the ILC/CLIC contributors to this talk

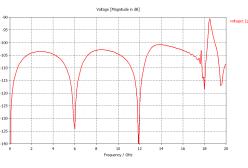
Thanks for your attention!

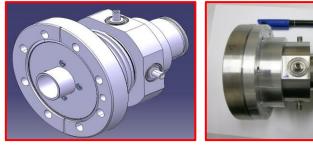
CLIC Drive Beam BPM



Requirements:

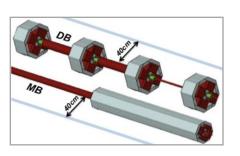

- High current 100A high bunch frequency 12GHz
- In the vicinity of an RF structure producing 100MW @12GHz
- Temporal resolution of 10ns
- 2µm resolution over an aperture of 23mm (accurate calibration)
- Simple and Cheap ~ 40k units


CLIC TEST FACILITY 3 uses Inductive Pick-ups ~60 Units ~ 5um resolution measured



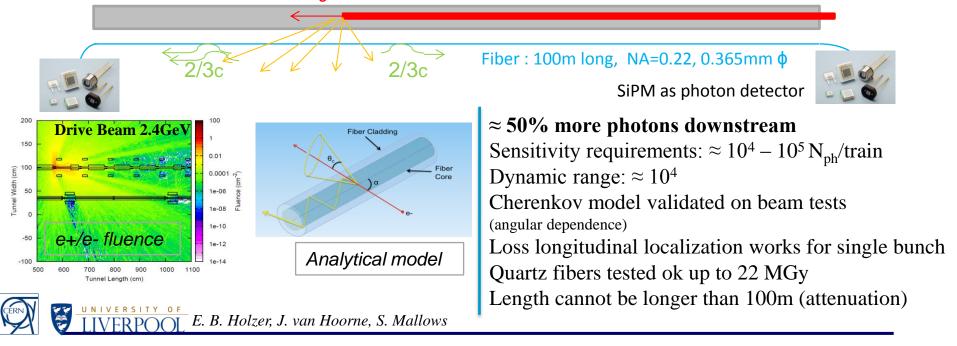
Cheaper alternative based on Stripline Pick-ups (A. Benot-Morell, S. Smith, M. Wendt, L. Soby)

To be tested on CTF3 in 2013


November 14, 2013 – LC Beam Diagnostics Key Issues (T. Lefevre, M. Wendt) – LCWS 2013

Page 21

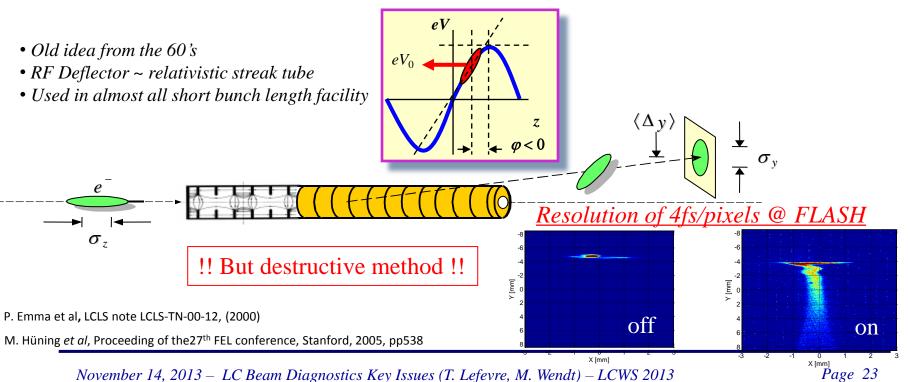
CLIC Beam Loss Monitors



FLUKA model to simulate secondary particle shower distributions requirements

- Large dynamic 10⁵ to cover destructive and operational losses
- Annual dose \leq 50 kGy at detector location
- Ionization chambers as baseline choice : 1 detector/quadrupole
 Based on LHC ionization chamber and readout electronics with dynamic range 10⁵ (10⁶ under investigation) and sensitivity 7e10⁻⁹ Gy

Considering long distributed system based of optical fibers used as Cherenkov detectors


----ilc

Bunch Length RF Deflector

	ILC	CLIC linac	XFEL	LCLS
Beam Energy (GeV)	250	1500	20	15
Linac RF Frequency (GHz)	1.3	12	1.3	2.856
Bunch charge (nC)	3	0.6	1	1
Bunch Length (fs)	700	150	80	73

- High resolution, single shot longitudinal measurement:
 - Baseline solution using RF deflector: Excellent time resolution, well calibrated

