

Higgs inflation scenario in a radiative seesaw model and its testability at the ILC

Toshinori MATSUI (Univ. of Toyama) in collaboration with Shinya KANEMURA¹, Takehiro NABESHIMA² ¹Univ. of Toyama, ²Technische Universität München Phys. Lett. B **723** (2013) 126, including some recent developments

Nov. 13, 2013 LCWS13

In this talk,

- In Higgs inflation scenario, it would be difficult to satisfy perturbative unitarity and vacuum stability.
- These problems can be solved by multi-Higgs models.
- In the framework of a radiative seesaw scenario with multi-Higgs structure, we can explain not only DM, neutrino masses but also inflation.
- We discuss the testability of the characteristic mass spectrum at the collider experiments.

What is inflation?

Standard cosmology is the very successful model to explain observations.

Additionally, we need inflation to solve horizon problem & flatness problem.

$$a_{\Lambda}=\exp\left(rac{\Lambda}{3}t
ight)~~\Lambda\equiv8\pi G
ho_{\Lambda}$$
Guth(1981), Sato(1981)

•But, we do not know the detail of inflation.

•The scenario of slow-roll inflation is explained by a scalar particle (inflaton) φ.

$\ensuremath{\uparrow}\xspace{\mathsf{Typical}}$ potential of the slow-roll inflation

Nov. 13, 2013 LCWS13

What is inflation?

Standard cosmology is the very successful model to explain observations.

Additionally, we need inflation to solve horizon problem & flatness problem.

$$a_{\Lambda}=\exp\left(rac{\Lambda}{3}t
ight)~~\Lambda\equiv8\pi G
ho_{\Lambda}$$
Guth(1981), Sato(1981)

•But, we do not know the detail of inflation.

•The scenario of slow-roll inflation is explained by a scalar particle (inflaton) φ.

The result of Planck

Planck data support to Higgs inflation model.

Nov. 13, 2013 LCWS13

Higgs inflation scenario

Inflaton = Higgs boson

Simplest model "The Standard Model Higgs boson as the inflaton" F. L. Bezrukov, M. Shaposhnikov, Phys. Lett. B **659**, 703 (2008) We introduce to the coupling term of the Higgs field to gravity. $\frac{\mathcal{L}_J}{\sqrt{-g_J}} = \mathcal{L}_{SM} - \frac{1}{2}M_P^2 R - \xi H^{\dagger} H R}{M_P : Planck mass, R : Ricci scalar}$ $\xi \simeq 49000\sqrt{\lambda} \quad n_s \simeq 0.97 \quad r \simeq 0.0033 \text{ (Predictions)}$ • ξ is too large from curvature power spectrum: $\mathcal{P}_R = 2.198 \pm 0.056 \times 10^{-9}$ • Slow-roll parameters agree with Planck date. • Inflation scale is $\Lambda_I = \frac{M_P}{\sqrt{\xi}}$.

Constraints of slow-roll inflation can be satisfied!

(I) Problem of perturbative unitarity

C.P.Burgess, H.M.Lee, M.Trott, JHEP **1007**, 007(2010)

• Perturbative unitarity is violated at high energy (which scale is $\Lambda_U \equiv \frac{M_P}{\xi}$) by the Higgs-gauge scattering processes.

$$\mathcal{M}(W_L \,\chi_h \to W_L \,\chi_h) = \mathcal{M}(W_L \,h \to W_L \,h) + a \,\frac{E^2}{\Lambda_U^2} + b$$

 χ_h is Higgs boson in Einstein frame.

Cannot reach to the inflation scale!

 $\Lambda_{\rm I} = \frac{M_P}{\sqrt{\xi}}$

(I)Solution of unitarity problem by singlet scalar field (σ) G.F.Giudice, H.M.Lee, Phys.Lett.B **694**, 294(2011)

$$\frac{\mathcal{L}_J}{\sqrt{-g_J}} = |D_\mu H| + \frac{1}{2} (\partial_\mu \sigma)^2 - V - \frac{1}{2} (M_P^2 + 2\xi H^{\dagger} H + \zeta \sigma^2) \mathcal{R}$$

$$\frac{\lambda_h \lambda_\sigma - \lambda_{h\sigma}^2 / 4}{\lambda_h \zeta^2 + \lambda_\sigma \xi^2 - \zeta \xi \lambda_{h\sigma}} \equiv \frac{\lambda_{\text{eff}}}{\xi_{\text{eff}}^2} \simeq (10^4)^{-2}$$

By the coupling ζ between singlet scalar (σ) and Ricci scalar (R), it is possible to choose $\zeta \simeq 10^4$, $\xi < 10^2$. $\Lambda_{\rm U} = \frac{M_P}{\xi} > \Lambda_{\rm I} (\simeq 10^{17} {\rm GeV})$

Since the singlet scalar boson does not interact with gauge bosons, we can solve unitarity problem.

(II) Problem of vacuum stability J.Elias-Miro et al, Phys. Lett. B 709, 222 (2012)

Extension to a radiative seesaw scenario $(\Phi_1 + \Phi_2 + v_R + \sigma)$

- In a radiative seesaw model, we introduce second scalar doublet (Φ_2) and right-handed neutrinos (v_R) imposing unbroken Z_2 symmetry.
- The extra lightest neutral particle can be DM candidate by Z_2 symmetry and we can explain m_v at the loop diagram. $\langle \Phi_1 \rangle = \langle \Phi_1 \rangle$

Particle contents (A is DM in our model)

h, H, A, H[±], v_R , (σ) Z₂-even Z₂-odd

- We can explain DM & m_v in addition to inflation.
- We found the parameter regions satisfying perturbative unitarity (σ) & vacuum stability (Φ₂).

The result of RGEs analysis decide mass spectrum!

- DM direct detection (XENON100) & relic density (WMAP) • To avoid Higgs invisible decay $\Rightarrow 63 \text{GeV} \lesssim m_A \lesssim 66 \text{GeV}$
- Condition of the stable potential for scalar bosons as inflatons
 Vacuum stability & Triviality bound
 LEP bound

$$\Rightarrow m_H \lesssim 100 \text{GeV} \\ \Rightarrow 142 \text{GeV} \lesssim m_{H^{\pm}} \lesssim 146 \text{GeV}$$

The result of RGEs analysis decide mass spectrum!

- DM direct detection (XENON100) & relic density (WMAP)
- To avoid Higgs invisible decay $\Rightarrow 63 \text{GeV} \leq m_A \leq 66 \text{GeV}$
- Condition of the stable potential $\frac{1}{3}$ for scalar bosons as inflatons
- Vacuum stability & Triviality bound
- LEP bound

E.Lundstrom, M.Gustafsson, J.Edsjo, Phys. Rev. D 79, 035013 (2009)个

It is difficult to test our model at LHC!

E.Dolle, X.Miao, S.Su, B.Thomas, PRD81, 035003(2010) • AH production is dominant.

Testability at the ILC $\sqrt{s} = 500 \text{GeV}$

We can measure (m_H, m_A) by looking at the endpoint of energy distribution.

Testability at the ILC $\sqrt{s} = 500 \text{GeV}$

We can measure $(m_{H\pm}, m_A)$ by looking at the endpoint of energy distribution.

Conclusions

- In Higgs inflation scenario, it would be difficult to satisfy perturbative unitarity and vacuum stability.
- These problems can be solved by multi-Higgs models.
- In the framework of a radiative seesaw scenario with multi-Higgs structure, we can explain not only DM, neutrino masses but also inflation.
- We can test this scenario at the ILC by measuring the energy distribution of the inert scalar pair productions.

Back Up

Nov. 13, 2013 LCWS13

Toshinori MATSUI (Univ. of Toyama)

19

Unitarity problem

$$h \ll \frac{M_P}{\xi}$$

$$\begin{split} h &\ll \frac{M_P}{\xi} & \text{C.P.Burgess, H.M.Lee, M.Trott, JHEP 1007, 007(2010)} \\ h &\ll \frac{M_P}{\xi} & v + h \to (\langle \chi \rangle + \chi) \big[1 - (\langle \chi \rangle + \chi)^2 / \Lambda^2 \big] + \dots \\ \text{Higgs self interaction} & \langle \chi \rangle = v \big(1 + v^2 / \Lambda^2 \big) + \dots \\ U(\chi) &\equiv \frac{1}{\Omega(\chi)^4} \frac{\lambda}{4} (v + h(\chi))^4 & \lambda \equiv \frac{M_P}{\xi} \\ &\simeq \frac{1}{\Omega(\chi)^4} \frac{\lambda}{4} [(\langle \chi \rangle + \chi)^4 - 4(\langle \chi \rangle + \chi)^6 / \Lambda^2] & \lambda v (1 - 19 \frac{v^2}{\Lambda^2}) \chi^3 \\ \end{split}$$

Higgs-Gauge interaction

$$\frac{1}{8\Omega^{2}} \left[2g^{2}(v+h)^{2}W_{\mu}^{+}W^{-\mu} + (g^{2}+g'^{2})(v+h)^{2}Z_{\mu}Z^{\mu} \right]
- \left(M_{W}^{2}W_{\mu}^{+}W^{-\mu} + \frac{M_{Z}^{2}}{2}Z_{\mu}Z^{\mu} \right) \quad \left(\frac{2\overline{h}}{v_{h}} + \frac{\overline{h}^{2}}{v_{h}^{2}} \right) =
- \frac{M_{W}^{2}}{v_{h}^{2}}W_{\mu}^{+}W^{-\mu}\overline{\chi}^{2} \left(1 - 12\frac{\xi^{2}v_{h}^{2}}{M_{P}^{2}} \right) - \frac{2M_{W}^{2}}{v_{h}}W_{\mu}^{+}W^{-\mu}\overline{\chi} \left(1 - 3\frac{\xi^{2}v_{h}^{2}}{M_{P}^{2}} \right)
- \frac{M_{Z}^{2}}{2v_{h}^{2}}Z_{\mu}Z^{\mu}\overline{\chi}^{2} \left(1 - 12\frac{\overline{\xi^{2}v_{h}^{2}}}{M_{P}^{2}} \right) - \frac{2M_{Z}^{2}}{v_{h}}Z_{\mu}Z^{\mu}\overline{\chi} \left(1 - 3\frac{\xi^{2}v_{h}^{2}}{M_{P}^{2}} \right)$$

Nov. 13, 2013 LCWS13

Introduce singlet scalar field

G.F.Giudice, H.M.Lee, Phys.Lett.B 694, 294(2011)

$$\frac{\mathcal{L}_J}{\sqrt{-g_J}} = |D_\mu H| + \frac{1}{2} (\partial_\mu \sigma)^2 - V - \frac{1}{2} (M_P^2 + 2\xi H^\dagger H + \zeta \sigma^2) \mathcal{R}$$

$$\mathcal{R} = \Omega^{-2}\hat{\mathcal{R}} + 6\Omega^{-3}\Omega_{:\mu\nu}g^{E\mu\nu} \quad \Omega^2 = 1 + \frac{\xi h^2}{M_P^2} + \frac{\zeta\sigma^2}{M_P^2}$$

Nov. 13, 2013 LCWS13

The behavior of the Higgs fields as inflatons

$$V = V_{2HDM} + \frac{M_P^2}{2}\mathscr{R} + (\xi_1 \Phi_1^2 + \xi_2 \Phi_2^2)\mathscr{R}$$

J.-O.Gong, H.M.Lee, S.K.Kang, JHEP 1204, 128(2012)

Two Higgs fields (Φ_1 , Φ_2) play a role of inflatons.

⇒In the previous study, they discussed the specific case that only one Higgs field plays a role of inflaton.

Condition of the stable potential for scalar bosons as inflatons $\lambda_1\lambda_2 - (\lambda_3 + \lambda_4)^2 > 0$

Nov. 11, 2013 LCWS13

DM & m_v on radiative seesaw scenario E.Ma, PRD**73**, 077301(2006)

$$\begin{aligned} \mathcal{L}_{\text{Yukawa}} &= Y_{\ell} \overline{L_L} \Phi_1 \ell_R + Y_{\nu} \overline{L_L} \Phi_2^c \nu_R + h.c. \\ \mathcal{L}_{\text{scalar}} &= -V(\Phi_1, \Phi_2) :_{\Phi_2} \& \nu_{\text{R}} \text{ are } \mathsf{Z}_2\text{-odd fields.} \end{aligned}$$

 $\begin{array}{c} \Phi_2^0 \neq \\ & \downarrow \\ \nu_L \longrightarrow & \nu_R \end{array}$

 $<\Phi_1>$

`

 $< \Phi_1 >$

 (Φ_{2}^{0})

 $-\nu_L$

$$(m_{\nu})_{ij} = \sum_{k} \frac{(Y_{\nu})_{i}^{k}(Y_{\nu})_{j}^{k}M_{R}^{k}}{16\pi^{2}} \left[\frac{m_{H}^{2}}{m_{H}^{2} - (M_{R}^{k})^{2}} \ln \frac{m_{H}^{2}}{(M_{R}^{k})^{2}} - \frac{m_{A}^{2}}{m_{A}^{2} - (M_{R}^{k})^{2}} \ln \frac{m_{A}^{2}}{(M_{R}^{k})^{2}} \right]$$
$$\approx \sum_{k} \frac{(Y_{\nu})_{i}^{k}(Y_{\nu})_{j}^{k}M_{R}^{k}}{16\pi^{2}} \frac{\lambda_{5}v^{2}}{(M_{R}^{k})^{2}}$$
$$\frac{(Y_{\nu})_{i}^{k}(Y_{\nu})_{j}^{k}}{M_{R}^{k}} \simeq \mathcal{O}(10^{-11}) \text{GeV}^{-1}$$

$$M_R^k \simeq \mathscr{O}(10^7) \text{GeV} \Rightarrow (Y_\nu)_i^k \simeq \mathscr{O}(10^{-2})$$

Neutrino masses:

Constraints on dark matter mass (m_A)

Constraint on Higgs invisible decay from LHC J.R.Espinosa, arXiv:1207.1717[hep-ph] Br(h \rightarrow inv)=0.05±0.32

To avoid kinematically \Rightarrow m_A>63GeV

Constraint on the electroweak parameters

S.Kanemura, Y.Okada, H.Taniguchi, K.Tsumura, arXiv: 1108.3297[hep-ph]

				T	est	tak	Dili	ty	at	: tł	ne LH	С	$\sqrt{s} = 14 \text{TeV}$
	Benchmark	m_h (Ge	V)	$\overline{m_A({ m GeV})}$	δ_1	(GeV)	δ_2 (Ge	eV)	λ_L	q ∖		$Z = \ell^+$	
	LH1	150		40	-	100	100		-0.275		\ н		
	LH2	120		40		70	70		-0.15				
	LH3	120		82		50	50		-0.20			∖` `A]	
	LH4	120		73		10	50		0.0	_ /	-	*\ F m	nissing
	LH5	120		79		50	10		-0.18	q ⁄		`AJ ''	
δ	$m_{1} = m_{11+} - m_{11+}$	- <i>m. i</i>			Le	Level I Cuts Level I+I			el I+II	Cuts	SM	Level I Cuts	Level I+II Cuts
δ	$m_H = m_{H^{\perp}}$	m_A	Be	nchmark	σ_{AH}	$\sigma_{H^+H^-}$	σ_{hZ}	σ_{AH}	$\sigma_{H^+H^+}$	$-\sigma_{hZ}$	Backgrounds	σ_{BG}	σ_{BG}
λ_{I}	$\lambda_{2} \equiv \lambda_{3} + \lambda_{4}$	$_4 + \lambda_5$			(fb)	(fb)	(fb)	(fb)	(fb)	(fb)	Ducingi ounido	(fb)	(fb)
				LH1	9.61	0.82	2.90	6.03	0.46	1.79	WW	621.44	316.97
			$\left(\right)$	LH2	10.28	1.06	5.75	6.53	0.51	3.47	ZZ/γ^*	132.09	76.46
	/			LH3	2.32	0.34	0.01	1.47	0.13	0.01	$t\bar{t}$	4531.51	58.87
				LH4	3.84	0.19	0	2.07	0.02	0	WZ/γ^*	113.97	51.85
	<u>Level I Cuts</u>	5		LH5	0.38	~ 0	0.01	~ 0	0.14	0.01	Wt	709.14	52.11
• Exactly two electrons or muons with opposite charge.							Total SM						
• $p_T^{\ell} \ge 15 \text{ GeV}$ and $ \eta_{\ell} \le 2.5$ for each of these charged leptons.										Background	6108.15	556.26	

• For lepton isolation, we require $\Delta R_{\ell\ell} \ge 0.4$ for the charged-lepton pair, and $\Delta R_{\ell j} \ge ||$ 0.4 for each combination of one jet and one charged lepton. E Dolle X Miao S Su B Thomas

Level II Cuts

- No jets with $p_T^j > 20$ GeV and pseudorapidity within the range $|\eta_j| < 3.0$.

E.Dolle, X.Miao, S.Su, B.Thomas, PRD81, 035003(2010)

Testability at the LHC

 $\sqrt{s} = 14 \text{TeV}$ $L = 100 \text{fb}^{-1}$

E.Dolle, X.Miao, S.Su, B.Thomas, PRD81, 035003(2010)

		Level III Cuts										
Benchmark		σ_{AH}	$\sigma_{H^+H^-}$	σ_{hZ}	σ_{WW}	σ_{ZZ/γ^*}	$\sigma_{t ar{t}}$	σ_{WZ/γ^*}	σ_{Wt}	$\sigma_{ m BG}^{ m comb}$	S/B	S/\sqrt{B}
		(fb)	(fb)	(fb)	(fb)	(fb)	(fb)	(fb)	(fb)	(fb)		
	LH1	3.42	0.04	1.28	11.59	36.99	4.55	19.52	3.82	77.79	0.04	3.87
(LH2	0.89	~ 0	0.01	0.07	0.24	0.11	0.08	0.07	0.58	1.53	11.66
	LH3	0.18	~ 0	~ 0	0.03	0.15	0.05	0.04	0.06	0.34	0.52	3.04
	LH4	0.19	~ 0	0	0.03	0.15	0.05	0.04	0.06	0.34	0.57	3.29
	LH5	0.004	~ 0	~ 0	0.13	0.04	~ 0	0.04	0.01	0.23	0.02	0.02

Level III Cuts

B	enchmark	$M_{\ell\ell}^{\min}$	$M_{\ell\ell}^{ m max}$	$\Delta R_{\ell\ell}^{ m max}$	$\cos \phi_{\ell\ell}^{ m min}$	H_T^{\min}	${\not\!\! E}_T^{\min}$	$p_{T\ell}^{ m max}$
	LH1	$80 \mathrm{GeV}$	$100 { m GeV}$	—	—	$150 { m ~GeV}$	$50 \mathrm{GeV}$	—
(LH2	—	$70 {\rm GeV}$	1.2	0.7	$200 {\rm GeV}$	$100 {\rm GeV}$	-
	LH3	$20 \mathrm{GeV}$	$50 {\rm GeV}$	0.8	0.7	$200 {\rm GeV}$	$90 \mathrm{GeV}$	-
	LH4	$20 \mathrm{GeV}$	$50 {\rm GeV}$	0.8	0.7	$200 {\rm GeV}$	$90 {\rm GeV}$	-
	LH5	_	$10 \mathrm{GeV}$	0.6	0.9	_	$30 \mathrm{GeV}$	25 GeV

Nov. 13, 2013 LCWS13

HA pair production

$$Vs = 500 \text{GeV}$$

 $L = 500 \text{fb}^{-1}$

$$\sigma_{e^-e^+ \to HA} \simeq 50 \text{fb}^{-1}$$

T

Back Ground

Nov. 13, 2013 LCWS13

H⁺H⁻ pair production

Branching ratio $h \rightarrow \gamma \gamma$

$$\frac{\text{BR}(h \to \gamma \gamma)}{\text{BR}(h_{\text{SM}} \to \gamma \gamma)} = \frac{|F_1(\tau_W) + 3(\frac{2}{3})^2 F_{1/2}(\tau_t)|^2 + \frac{\lambda_3 v^2}{2m_{H^{\pm}}} F_0(\tau_{H^{\pm}})}{|F_1(\tau_W) + 3(\frac{2}{3})^2 F_{1/2}(\tau_t)|^2} \\ \simeq 0.9$$

$$F_{1} = \frac{2\tau_{i}^{2} + 3\tau_{i} + 3(2\tau_{i} - 1)f(\tau_{i})}{\tau_{i}^{2}} \quad F_{1/2} = -\frac{2[\tau_{i} + (\tau_{i} - 1)f(\tau_{i})]}{\tau_{i}^{2}} \quad F_{0} = \frac{\tau_{i} - f(\tau_{i})}{\tau_{i}^{2}}$$

$$f(\tau_{i}) = \begin{cases} arcsin^{2}\sqrt{\tau_{i}} & \tau_{i} \leq 1 \\ -\frac{1}{4}[log\frac{1 + \sqrt{1 - \tau_{i}^{-1}}}{1 - \sqrt{1 - \tau_{i}^{-1}}} - i\pi]^{2} & \tau_{i} > 1 \end{cases} \quad i = W, t, H^{\pm}$$

P.Posch, Phys. Lett. B 558, 157(2003)

Nov. 13, 2013 LCWS13