

CLIC Detector and Physics Study

André Sailer (CERN) on Behalf of the CLIC Detector and Physics Study

> Linear Collider Workshop November 11–15, 2013 Tokyo, Japan

Overview

- 1 Brief Introduction to CLIC: Accelerator and Detectors
- 2 Hardware R&D for CLIC
- 3 Software
- 4 Physics Studies at CLIC
- 5 The CLIC Detector and Physics Study Group
- 6 Summary

Compact Linear Collider

Compact Linear Collider

- CLIC is based on room temperature copper cavities powered by a two-beam acceleration scheme (See Steinar's Talk this morning)
- Currently, the only concept for a multi-TeV electron-positron collider
- The acceleration scheme imposes extremely short bunch spacing with long gaps between short bunch train

Detector and Physics Study:

- In the last years, studied the requirements on the hardware for successful physics programme at CLIC
- Now: Detector optimisation, physics studies, and hardware R&D

Detector Models and Requirements

- Detector models for CLIC based on ILC LoI detector models
 - Including simulation and reconstruction frameworks, have since helped in their development
- Adapted geometry for higher energy and CLIC beam-induced backgrounds

- Successfully used for conceptual design reports and beyond
- Identified areas where detector technology has to be studied and developed
 - Tungsten as the absorber in hadronic calorimeter barrels
 - Vertex detector

Section 2: Hardware R&D for CLIC

Hardware: You design everything including every detail; then you build it. — Robert Lupton, CHEP13

Vertex Detector

- Hybrid technology with ultra-thin (50 μm) sensors and ASICs
 - Goal: 25 μm pitch, 10 ns time-stamping, 50 mW/cm²
- M. Benoit: Vertex-detector R&D for CLIC
- S. Arfaoui: Calibration, simulation and test-beam characterisation for Timepix hybrid-pixel readout assemblies with ultra-thin sensors

CLICPix: Readout with 25 μm pitch

Thin Sensors in the Test-beam

- 50 μm sensors with 55 μm pitch (Timepix) in the test-beam at DESY
- For two pixel wide clusters (charge sharing), achieve a resolution of ≈ 4 µm (see lower right)
- Next assemblies with 25 μm pitch (CLICPix)

Cooling: From Simulation to Reality

To reach low material budget:

- Cooling the vertex detector with air flowing through the double walled beam pipe
- Computational Fluid Dynamics (CFD) simulation show promising results
- Test-stand in construction to test the stability, vibrations, and cooling; and cross-check the simulation
 - Study different ladder structures

Also in M. Benoit: Vertex-detector R&D for CLIC

Photograph of the test stand

Vertex Layout and Material

- Air cooling requires spiral layout to let air flow through all of the vertex detector
- Flavour tagging performance with different layouts and material budgets
 - Compare different layouts and understand (in)efficiencies
 - Different spiral structures implemented in the simulation
 - Flavour-tagging efficiencies studied in full simulation with different jet energies and angles
- N. Alipour Tehrani: Physics performance studies for different CLIC vertex detector geometries

Double spirals

Misidentification ratio of spiral geometries compared to

Tungsten in Hadronic Calorimeters

- Particle Flow + Desired Magnetic Field + High jet energy + Cost considerations = Tungsten HCal (in the barrel)
- Test beams at the CERN PS and SPS with the Calice Analog Scintillator HCal (2010–2011) and Calice Digital RPC HCal (2012)
- Also in the test beam: Planes equipped with fast readout to study time-structure of showers in tungsten: T3B (scintillator), FastRPC
- Studying the performance of tungsten with hadronic showers and compare data with different GEANT4 physics lists

Energy resolution as a function of calorimeter size for different tungsten absorber thicknesses and total nuclear interaction lengths

Jet energy resolution as a function of calorimeter size

Analog HCal with Tungsten Absorbers

Calice Analog Scintillator HCal with tungsten absorber

- First analyses of data are under review for publication
- High-energy-data analyses on going
 - Including tail catcher (Steel absorber with scintillator) used for energy correction
- E. Sicking: Analysis of CALICE W-AHCAL data at 10 100 GeV

LCWS13, Nov. 11, 2013

15

10

5

Digital HCal with Tungsten Absorbers Calice Digital RPC HCal with tungsten absorbers

un 660322, -20 GeV

- Analysis of data going on
- Calibration going well, e.g., constant number of hits per layer from Muons

Hit-multiplicity after calibration

ECal Optimisation

- Large area of silicon sensors drive the ECal cost
- Study: Reduced radius, fewer layers, alternative readout (scintillator pads/strips) with larger segmentation: trade-off between jet-energy resolution and cost

Scintillator Readout

- Evaluating use of scintillator pads in the ECal
- Setup to study scintillator tiles and SiliconPMs
- Need large dynamic range for TeV e.m. showers (≥ 10k MIPs/Pad)

Also under development:

 Temperature stabilisation of SiPM gain

G. Eigen: Gain Stabilisation of SiPMs

 LED and fibre based calibration system for SiPMs J. Kvasnicka: Optical fibre calibration system and adaptive power supply

ECal Optimisation and Software

- ECal optimisation requires in depth understanding of Particle Flow Algorithms and their tuning
 - Calibration is necessary for any ECal layout
- Improvements in the ECal simulation (Thanks to: D. Jeans, A. Lucaci, J. Marshall, K. Coterra)

J. Marshall: PandoraPFA with SiW and ScW ECAL Models

Forward Calorimetry

- Test beam structure for precise position of absorber and sensor planes
- Reproducible 50 µm positioning: Using precision tooled combs and permaglass frames to fix locations

- Ready for test beams
- W. Lohmann: FCAL results from beamtests and future plans
- Electronics for fast readout of the Forward Calorimeters

Section 3: Software

Software: You design everything including every detail; then you're done. — Robert Lupton, CHEP13

ILCDIRAC

ILCDIRAC offers a easy access to GRID computing resources

- All LC software supported via simplified interface: Mokka, Marlin (inc. PandoraPFA, LCFIPlus), Slic, org.lcsim, Whizard
- Production system for SiD DBD and CLICdp; Used by Calice and users
 - ► 1.4 Million jobs in the last 6 months
 - Now also being adopted by ILD
- For CLICdp physics studies
 - About 40 million events produced
- Managing more than 1 PB
- C. Grefe: ILCDirac status and future
- Many Thanks to the GRID site admins, and DIRAC developers for fast responses

DD4hep: Detector Description for HEP

- AIDA supported general purpose detector geometry package, for the full experiment life-cycle
 - Single source of information for simulation, reconstruction, visualisation
- Common geometry framework
 - Enables common implementations for reconstruction
- Currently under development: developers from all LC concepts
- Plan to have new CLIC detector model implemented by end of next year

(M. Frank, CHEP13)

Forward Clustering and Tagging

- Working on clustering package for forward calorimeters: consolidation of existing implementations
 - Many possible geometries
- ILC: Uniform segmentation

ILC: Proportional segmentation

CLIC: Uniform Segmentation

- AS: Clustering Algorithms for the Forward Calorimeters
- For full simulation need to overlay background files
 - · Library under development: Use estimated efficiencies for electron tagging

Section 4:

Physics Studies at CLIC

LCWS13, Nov. 11, 2013

A. Sailer: CLIC Detector and Physics Study

21/29

Physics Studies at CLIC

Higgs Physics can be done at any stage of the CLIC programme

 Higher energies benefit from increased WW-fusion Higgs production cross-section

Number of Higgs events including ISR and Beamstrahlung

-	350 GeV	1.4 TeV	3 TeV
\mathscr{L}_{int} [fb ⁻¹]	500	1500	2000
# ZH events	68,000	20,000	11,000
# $Hv_e \overline{v}_e$ events	26,000	370,000	830,000
# He ⁺ e ⁻ events	3,700	37,000	84,000

- Larger centre-of-mass energies allow more precise study of rare Higgs decays
- Reach for New Physics via production of heavy particles, or indirect evidence

Broad range of Higgs studies at different centre-of-mass energies

- M. Thomson: H→WW* at 1.4 TeV and HZ→Hqq at 350 GeV
- E. Sicking: Higgs boson decays to γγ and to Zγ at 1.4 TeV
- I. Bozovic-Jelisavcic: $H \rightarrow \mu\mu$ at 1.4 TeV CLIC
- A. Robson: Fusion Higgs production in ZZ fusion at 1.4 TeV
- M. Vogel: Measurement of the top Yukawa coupling at a 1.4 TeV CLIC
- T. Lastovicka: Higgs self-coupling at 1.4 and 3 TeV
- P. Roloff: Higgs Physics at CLIC

Broad range of Higgs studies at different centre-of-mass energies

- M. Thomson: H→WW* at 1.4 TeV and HZ→Hqq at 350 GeV
- E. Sicking: Higgs boson decays to γγ and to Zγ at 1.4 TeV
- I. Bozovic-Jelisavcic: $H \rightarrow \mu\mu$ at 1.4 TeV CLIC
- A. Robson: Fusion Higgs production in ZZ fusion at 1.4 TeV
- M. Vogel: Measurement of the top Yukawa coupling at a 1.4 TeV CLIC
- T. Lastovicka: Higgs self-coupling at 1.4 and 3 TeV
- P. Roloff: Higgs Physics at CLIC

M_{Higgs candidate} (GeV)

Broad range of Higgs studies at different centre-of-mass energies

- M. Thomson: H→WW* at 1.4 TeV and HZ→Hqq at 350 GeV
- E. Sicking: Higgs boson decays to γγ and to Zγ at 1.4 TeV
- I. Bozovic-Jelisavcic: H → µµ at 1.4 TeV CLIC
- A. Robson: Fusion Higgs production in ZZ fusion at 1.4 TeV
- M. Vogel: Measurement of the top Yukawa coupling at a 1.4 TeV CLIC
- T. Lastovicka: Higgs self-coupling at 1.4 and 3 TeV
- P. Roloff: Higgs Physics at CLIC

Broad range of Higgs studies at different centre-of-mass energies

- M. Thomson: H→WW* at 1.4 TeV and HZ→Hqq at 350 GeV
- E. Sicking: Higgs boson decays to γγ and to Zγ at 1.4 TeV
- I. Bozovic-Jelisavcic: $H \rightarrow \mu\mu$ at 1.4 TeV CLIC
- A. Robson: Fusion Higgs production in ZZ fusion at 1.4 TeV
- M. Vogel: Measurement of the top Yukawa coupling at a 1.4 TeV CLIC
- T. Lastovicka: Higgs self-coupling at 1.4 and 3 TeV
- P. Roloff: Higgs Physics at CLIC

Broad range of Higgs studies at different centre-of-mass energies

- M. Thomson: H→WW* at 1.4 TeV and HZ→Hqq at 350 GeV
- E. Sicking: Higgs boson decays to γγ and to Zγ at 1.4 TeV
- I. Bozovic-Jelisavcic: $H \rightarrow \mu\mu$ at 1.4 TeV CLIC
- A. Robson: Fusion Higgs production in ZZ fusion at 1.4 TeV
- M. Vogel: Measurement of the top Yukawa coupling at a 1.4 TeV CLIC
- T. Lastovicka: Higgs self-coupling at 1.4 and 3 TeV
- P. Roloff: Higgs Physics at CLIC

Higgs Mass in signal and background events

Broad range of Higgs studies at different centre-of-mass energies

- M. Thomson: H→WW* at 1.4 TeV and HZ→Hqq at 350 GeV
- E. Sicking: Higgs boson decays to γγ and to Zγ at 1.4 TeV
- I. Bozovic-Jelisavcic: $H \rightarrow \mu\mu$ at 1.4 TeV CLIC
- A. Robson: Fusion Higgs production in ZZ fusion at 1.4 TeV
- M. Vogel: Measurement of the top Yukawa coupling at a 1.4 TeV CLIC
- T. Lastovicka: Higgs self-coupling at 1.4 and 3 TeV
- P. Roloff: Higgs Physics at CLIC

Broad range of Higgs studies at different centre-of-mass energies

- M. Thomson: H→WW* at 1.4 TeV and HZ→Hqq at 350 GeV
- E. Sicking: Higgs boson decays to γγ and to Zγ at 1.4 TeV
- I. Bozovic-Jelisavcic: $H \rightarrow \mu\mu$ at 1.4 TeV CLIC
- A. Robson: Fusion Higgs production in ZZ fusion at 1.4 TeV
- M. Vogel: Measurement of the top Yukawa coupling at a 1.4 TeV CLIC
- T. Lastovicka: Higgs self-coupling at 1.4 and 3 TeV
- P. Roloff: Higgs Physics at CLIC

Non-Higgs Studies

Top physics at CLIC, threshold scan, including reconstructed luminosity spectrum, invariant mass reconstruction, and possible studies at higher energies F. Simon: Top mass and future top studies at CLIC

- Model Independent Dark Matter Searches via excess in the single photon spectrum
 - Reach is limited by systematics: Theoretical uncertainty in background cross-sections, uncertainty of electron tagging efficiency, photon reconstruction efficiency,...

Section 5:

The CLIC Detector and Physics Study Group

The CLIC Detector and Physics Study

- Collaboration-like structure based in Memorandum of Cooperation http://lcd.web.cern.ch/lcd/Home/MoC.html
- Total of 20 members at the moment
 - Further members welcome (given approval by institute board)
- CERN is the host laboratory
- Chair of institute board: Frank Simon
- Spokesperson: Lucie Linssen
- Publication committee: Aharon Levy (Chair), Philip Burrows, Dieter Schlatter, Ulrik Uggerhøij
- Speakers committee: Erik van der Kraaij (Chair), Ivanka Božović-Jelisavčić, Maximilien Chefdeville

CLICdp session on Thursday afternoon

CLIC MoC Members

Australia:	Australian Collaboration for Accelerator Science (ACAS)	Poland:	The Henryk Niewodniczanski Institute of Nuclear Physics, Pol- ish Academy of Sciences, Cracow
Belarus:	NC PHEP, Belarusian State University, Minsk	Romania:	Institute of Space Science
Chile:	The Pontificia Universidad Catolica de Chile, Santiago	Serbia:	Vinca Institute for Nuclear Sciences, Belgrade
Czech	Institute of Physics of the Academy of Sciences of the Czech	Spain:	Spanish Network for Future Linear Colliders
Republic:	Republic, Prague		
Denmark:	Department of Physics and Astronomy, Aarhus University	Switzerland:	CERN
France:	Laboratoire dAnnecy-le-Vieux de Physique des Particules (LAPP), Annecy	UK:	The School of Physics and Astronomy, University of Birming- ham
Germany:	MPI Munich	UK:	University of Cambridge
Israel:	Tel Aviv University	UK:	University of Glasgow
Norway:	University of Bergen	UK:	University of Oxford
Poland:	Faculty of Physics and Applied Computer Science, AGH Univer- sity of Science and Technology, Cracow	USA:	Argonne National Laboratory, High Energy Physics Division

Summary

- CLIC detector and physics study is in post-conceptual-design phase
- Focus on hardware required for detector at CLIC
 - Vertex Detector
 - Hadronic Tungsten-Calorimeter
- Including optimisation, engineering, and integration studies
- Software:
 - ILCDirac, DD4hep, Forward Clustering, and ECal optimisation/PF: benefits all LC detectors
- Physics: CLIC Multi-TeV electron-positron collider can make high precision measurements
- CLICdp moved to more formal structure with election of Institute Board Chair, Spokesperson, and committees

Thanks to everyone for providing Material!

Thank you for your Attention!