Signatures at One-loop Order of Split Stops Scenarios using GRACE/SUSY

<u>T.Kon</u>, Y.Kouda, K.Kato, T.Ishikawa, Y.Kurihara, M.Jimbo and M.Kuroda

> LCWS13 Nov 2013, Tokyo

Outline

• Introduction

• Split stops scenarios

• GRACE/SUSY

• Results

• Summary & Conclusion

Introduction

• Discovered Higgs with mass 126GeV : lighter CP even Higgs in MSSM

$$m_{h}^{2} \leq m_{Z}^{2} + \frac{3g^{2}m_{t}^{4}}{8\pi^{2}m_{W}^{2}} \left[\ln\left(\frac{M_{\tilde{t}}^{2}}{m_{t}^{2}}\right) + x_{t}^{2}\left(1 - \frac{x_{t}^{2}}{12}\right) \right]$$
$$M_{\tilde{t}}^{2} = \frac{1}{2} \left(m_{\tilde{t}_{1}}^{2} + m_{\tilde{t}_{2}}^{2}\right) \qquad \left(\begin{array}{c}M_{\tilde{t}_{L}}^{2} & m_{t}X_{t}\\ m X & M^{2}\end{array}\right) \xrightarrow{Mass Matrix} (\tilde{t}_{L}, \tilde{t}_{R})$$

 $x_t = X_t / M_{\tilde{t}}$

 $m_t X_t \quad M_{\tilde{t}_R}^2$

Simple split scenario

Scenario 0				
$\tan\beta$	30	m_h	126 GeV	
μ	400 GeV			
M_2	380 GeV	$x_t / \sqrt{6}$	0.05	
M_1	177 GeV			
$m_{ ilde{\chi}_1^0}$	174 GeV	$m_{\tilde{g}}$	1.5 TeV	
$m_{ ilde{\chi}_1^+}$	336 GeV	$m_{ ilde q}$	1.6 TeV	
$m_{ ilde{\ell}}$	365 GeV	$m_{\tilde{t}_1}$	1.5 TeV	
$m_{ ilde{ au}_1}$	334 GeV	$m_{\tilde{t}_2}$	1.5 TeV	
$m_{ ilde{ au}_2}$	394 GeV	$m_{ ilde{b}_1}$	1.5 TeV	
m _A	1.5 TeV	$m_{\tilde{b}_2}$	1.5 TeV	

Low Energy / LEP Constraints		
$\Delta \rho$	0.233×10^{-4}	
$g_{\mu}-2$	0.251×10^{-8}	
$Br(b \to s\gamma)$	0.349×10^{-3}	
$Br(B_s \to \mu\mu)$	1×10^{-13}	

Suspect 2.4

G.Kane et al. hep-ph/0310042v1

Split stops scenarios

incid

-	Scenario 1			
	$\tan\beta$	30	m_h	126 GeV
	μ	400 GeV		
	M_2	380 GeV	$x_t / \sqrt{6}$	0.9
N.S.	M_{1}	177 GeV		
	$m_{ ilde{\chi}_1^0}$	174 GeV	$m_{ ilde{g}}$	1.5 TeV
	$m_{ ilde{\chi}_1^+}$	337 GeV	$m_{ ilde{q}}$	1.7 TeV
and the second	$m_{\widetilde{\ell}}$	365 GeV	$m_{ ilde{t}_1}$	0.33 TeV
14 14 14	$m_{ ilde{ au}_1}$	336 GeV	$m_{\tilde{t}_2}$	2.1 TeV
A REAL PROPERTY OF	$m_{ ilde{ au}_2}$	393 GeV	$m_{ ilde{b}_1}$	0.8 TeV
	m_A	1.5 TeV	$m_{\tilde{b}_2}$	2.1 TeV

	Low Energy / LEP Constraints			
	Δho	0.898×10^{-4}		
	$g_{\mu}-2$	0.249×10^{-8}		
A Second Second	$Br(b \rightarrow s\gamma)$	0.243×10^{-3}		
PLAN NA PA	$Br(B_s \rightarrow \mu\mu)$	4×10^{-11}		

 $\tilde{t}_1 \rightarrow b W^+ \tilde{\chi}_1^0$

GRACE/SUSY

* Tree ver. Ref. Comput.Phys.Commun.153 : 106, 2003 download : http://minami-home.kek.jp/

* 1-loop ver. Ref. Phys.Rev.D75 : 113002, 2007

Feynman diagrams
 Physical amplitudes
 Phase space Integration
 Event generation
 Various Self-checks

Results

J'MALINE

AND TALLAND STRATE

HAR BELLEN BALLE LET BASKS MAN STRATTON TO THE

ELW correction

 $e^+e^- \rightarrow t\bar{t}$

1114 diagrams

QCD correction

 $e^+e^- \rightarrow t\overline{t}$

30 diagrams

 $\sqrt{s} = 420 \, GeV$

ELW & QCD correction

 $\Delta \sigma = \frac{d\sigma(Sc1)}{d\cos\theta} - \frac{d\sigma(Sc0)}{d\cos\theta}$ $d\cos\theta$

Summary

• 126GeV Higgs in MSSM Split scenarios $M_{\tilde{t}}^{2} = \frac{1}{2} \left(m_{\tilde{t}_{1}}^{2} + m_{\tilde{t}_{2}}^{2} \right) \ge O(1TeV)$ $m_{\tilde{\ell}}, m_{\tilde{\chi}} << m_{\tilde{q}}, m_{\tilde{g}}$ • Constraint from $g_{\mu} - 2$ O(100GeV) sleptons & gauginos • We considered the case $m_{\tilde{\ell}}, m_{\tilde{\chi}} << m_{\tilde{g}}, m_{\tilde{u}, \tilde{d}, \tilde{c}, \tilde{s}}$ and $m_{\tilde{t}_1}, m_{\tilde{b}_1} << m_{\tilde{t}_2}, m_{\tilde{b}_2}$ Split stops scenarios

Conclusions

 Detailed study of Top pair production at ILC will be possibly important for us to distinguish Simple split and Split stops scenarios

there is lost water the manual the top their in the land die the to second water.

Particular, when upgraded LHC can not exclude 300-500GeV stop, it can be one of important target of ILC

Ulmer DPF2013