PRECISION LUMINOSITY MEASUREMENT AT ILC

Ivanka Bozovic Jelisavcic on behalf of the FCAL Collaboration

Vinca Institute of Nuclear Sciences Belgrade

- Concept of luminosity measurement
- Forward calorimetry at ILC
- Beam-induced effects
- How to deal with the beam-induced uncertainties novel approach
- 500 GeV and 1 TeV ILC
- Event selection for luminosity measurement
- Electromagnetic deflection
- 250 GeV ILC
- Conclusions

- Bhabha events scattered at small angles are detected in coincidence in the luminometer
- Luminosity is determined from the known theoretical cross-section for Bhabha scattering $L = N_S / \sigma_{th} \cdot \varepsilon$
- However, beam-beam effects (+ISR) induce deviation from the ideally symmetric kinematic of the Bhabha scattering
- Corresponding counting losses dominantly come from the asymmetric energy loss of the initial state (~10% effect at ILC).

LCWS 2013, November 11-15, Tokyo, Japan

See W. Lomann talk on status of FCAL instrumentation

FORWARD CALORIMETRY AT ILC

Tecnology options:

- LumiCal sampling SiW
- BeamCal W absorber +poly(mono)crystaline CVD diamond/GaAs/rad-hard Si
- Pair Monitor 2.10⁵ Si pixel (0.4, 0.4) mm

Luminometer:

- small Moliere radius O(1cm)
 good E resolution
- segmentation (azimuthal/radial): 48/64
- energy resolution:
 0.21GeV^{1/2}
- resolution in polar angle: (2.18±0.02)·10⁻²mrad

Very forward region of the ILD detector LumiCal [31,77] mrad BeamCal [5.8,43.5] mrad

state electrons

due to asymmetric boost of one of the final state electrons towards larger polar angles

Bhabha coincidence is lost

the main (though not the

distortion of the final

only) source of polar angle

The effect is severe: 8.4% (250 GeV), 12.8% (500 GeV) and 14.0% (1 TeV) in the top 20% of the luminosity spectrum

200

BEAM-INDUCED EFFECTS

BEAM-INDUCED EFFECTS - HOW TO HANDLE?

Beamstrahlung + ISR $\Rightarrow \vec{p}_1 + \vec{p}_2 \neq 0 \Leftrightarrow \beta_{CM} \neq 0$

- e^+e^- CM system after BS+ISR and before FSR (collision frame) is moving with β_{CM} w.r.t. the lab frame
- ${\ensuremath{\, \bullet }}$ Bhabha scattering is described with the unique deflection angle θ_{coll}

•
$$\beta_{coll} = \frac{\sin(\theta_1^{lab} + \theta_2^{lab})}{\sin \theta_1^{lab} + \sin \theta_2^{lab}}$$
 approx. to be

collinear with z axis

Events with β>β* (β*~0.24) are irreducibly lost from the detector FV

|tanθ₁|

300

400

500

600

700

800

7

- β_{coll} can be used to calculate weighting factor $w(\beta_{coll})$ to correct for the angular loss on the eventby-event basis
- The fraction of lost events : ≥ 14.5%, 15.6%, 17% at 250 GeV, 500 GeV and 1 TeV
- In the peak (>80% of the nominal CM energy), the fraction of unrecoverable events (due to off-axis ISR) is small, ≤1.5 permille and can be reduced further by the event selection
- This bias is insensitive to beam ^{10³} parameter variations (up to 1/10 of a permille)

900 1000

E_{CM} (GeV)

500 GEV AND 1 TEV COUNTING LOSSES DUE TO BS+ISR

- After correction from simulation for the bias due to the off-axis radiation (+ minor systematic effects), residual counting uncertainty is:
 (0.4 ±0.1) permille at 500 GeV and (0.7 ±0.1) permille at 1 TeV
- Equivalent effect can be achieved with the acoplanarity based event selection

Counting losses at 500 GeV and TeV ILC

EVENT SELECTION

- Energy of the reconstructed Bhabha pair >80% E_{CM}
- Acoplanarity of the reconstructed particles <5 deg.
- Signal selection efficiency >90%
- Suppression of physics background
- Restriction on acoplanarity reduces fraction of lost events in FV (suppresses events with off-axis radiation) from ~1.5 permille to ~0.4 permille at ILC energies

		500 GeV	1 TeV
Signal	E_s	94 %	94 %
Leptonic background	R_{bck}	60%	56%
$e^+e^- ightarrow e^+e^-e^+e^-$	B/S	$1.6 \cdot 10^{-3}$	$0.7 \cdot 10^{-3}$
Hadronic background	R_{bck}	70 %	91 %
$e^+e^- ightarrow e^+e^-q\overline{q}$	B/S	$0.6 \cdot 10^{-3}$	$0.1 \cdot 10^{-3}$
$\Delta L/L$		$2.2 \cdot 10^{-3}$	$0.8 \cdot 10^{-3}$

- Effective decrease of the Bhabha x-section
- Equivalent to an effective shift $\Delta \theta$ of the detector FV ($\theta_{min} + \Delta \theta, \theta_{max} + \Delta \theta$)
- $\Delta \theta$ can be determined from simulation:

where
$$\frac{\Delta L_{EMD}}{L} = x_{EMD} \Delta \theta$$

 $x_{EMD} = \frac{1}{N} \frac{dN}{d\theta}$

- In experiment, x_{EMD} can be determined from data as fractional difference in counts in the shifted volume w.r.t FV, and, consequently, ΔL can be obtained knowing $\Delta \theta$
- $\Delta \theta$ equals 0.020 mrad at 1 TeV, 0.043 mrad at 500 GeV and 0.067 mrad at 250 GeV, obtained by simulation

- $\Delta L/L \leq$ 5 permille at all ILC energies and can be taken as correction
- Systematic uncertainty of the correction due to beam parameter variations is 0.2 permille at 1 TeV, 0.5 permille at 500 GeV and 250 GeV
- The method is insensitive w.r.t beam parameter variations (i.e up to 20% variation of bunch charges and sizes)

250 GEV ILC

- Beamstrahlung effects (initial state radiation) are less than at higher CM energies: 8.4% (250 GeV), 12.8% (500 GeV) and 14.0% (1 TeV) in the top 20% of the luminosity spectrum
- Electromagnetic deflection is more pronounced than at higher energies 4.3‰ (250 GeV), 2.3 ‰ (500 GeV) and 1.7 ‰ (1 TeV) and it's not corrected in a completely simulation independent manner

250 GeV	
BS+ISR uncorrected	8.4%
BS+ISR corrected/top 20% of <i>L</i> spectrum*	1.2‰
BS+ISR corrected/full event selection*	0.4‰
EMD uncorrected	4.3‰
EMD corrected	0.5‰

* simulation independent

CONCLUSION

- Beam induced effects at ILC are severe (~10%) if one wants to determine integral luminosity with a permille precision
- The dominant effect is beamstrahlung and it can be reduced in a simulation independent manner with a residual uncertainty below permille
- Electromagnetic deflection increases at lower CM energies up to ~4.3 permille. From simulation, it can be corrected for below permille
- Background from physics processes dominantly contributes to the overall luminosity uncertainty up to a few permille

I. Bozovic Jelisavcic et al. Luminosity Measurement at ILC, JINST 8 P08012, August 2013, arXiv:1304.4082

S. Lukic et al. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC, JINST 8 P05008, May 2013

13

SIMULATION

