

Results of the SDHCAL technological prototype

Arnaud Steen On behalf of the CALICE collaboration

IPNL / Université Lyon 1

LCWS 14th November 2013

Outline

- The SDHCAL prototype
- 2 Test beam and data taking
- Particle identification
- 4 Energy Reconstruction

5 Summary

SDHCAL Motivation

- Highly granular gaseous hadronic calorimeters provide:
 - a powerful tool for the PFA (Particle Flow Algorythm)
 - a good energy resolution
 - a robust detector for the study of hadronic showers
- Compatible with ILC requirement:
 - \Rightarrow low power of consumption

SDHCAL Description

- Sampling calorimeter
- Active layer :
 - Gaseous detector : GRPC (Glass Resistive Plate Chamber) of $1m^2$
 - Gas mixture : 93% TFE; 5% CO₂; 2% SF₆
 - HV : \sim 6.9kV in avalanche mode
- Readout :
 - 96 × 96 pads per layer ⇒ more than 460k channels for the whole prototype
 - Semi-digital readout : 3 thresholds on the induced charge to have a better idea on the deposited energy
- Radiator :
 - 50 imes 20 mm stainless steel $\Rightarrow \sim 6 \lambda_I$

Test beam

- Test beam periods and statistics
 - CERN SPS May 2012 on H2 (2 weeks)
 - CERN SPS August-September 2012 on H6 (2 weeks)
 - CERN SPS November 2012 on H2 (1 week)
 - Totally : >400k of π , >1M of μ
 - Several dedicated runs for a threshold scan during Aug-Sep test beam.
- GRPC running conditions
 - 48 active layers
 - Average MIP induced charge $\sim 1.2~pC$
 - Threshold values : 0.114, 5.0, 15.0 pC (0.1, 4, 12.5 MIP)
 - No gain correction
- Beam set-up
 - Beam energy known with 1% of accuracy
 - Large beam profile to have a low particle rate ($<100 \mbox{Hz}/\mbox{cm}^2)$ and keep a good efficiency

Data taking

- Trigger less mode : all events recorded until memory is full
- Power pulsed mode : according to the time spill structure
 - 10 s every 45 s @ SPS
- ASIC internal clock : 200ns
- Average noise for the full detector :
 - 0.35Hits/200ns
- Physical events construction :
 - Nhit>7 in one time tick (t_0) is needed
 - Sum all hits recorded at $t=t_0\pm 200~ns$

Data quality control

- Online control :
 - ASIC occupancy \rightarrow chip noise
 - Efficiency per layer estimated using tracks (cosmics and muons from the beam)
- Offline control :
 - Part of noise removed by the event construction
 - Coherent noise :
 - Due to grounding problem in some layers
 - Easy to remove those events with their particular topology

First results

- Different particle identification ⇒ electron rejection based on fractal dimension cuts (eq. 5).
- Significant impact of $2^{nd} \& 3^{rd}$ thresholds on the energy resolution at high energy (for $E_{\pi} \ge 40 \, GeV$)

μ track selection

• Track construction :

- hits grouped into cluster in each layer using nearest neighbors
- isolated clusters removed
- track reconstructed if remaining 7 layers
- linear fit applied
- Track selection
 - $\chi^2 < 20$
 - $N_{cluster} \leq 1$ in each layer
 - $N_{hit}(cluster) \leq 5$
- Efficiency and multiplicity per layer estimated from reconstructed tracks from other layers
 - Efficiency = presence of at least one hit within 2*cm* radius around the expected impact point of the track $\overline{\epsilon} \simeq 0.95$
 - Multiplicity = number of hits per cluster $\bar{\mu} \simeq 1.73$

Particle identification

Proton contamination in H6 beam line above 20 GeV : [Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons from 20 to 350 GeV, Nuclear Instruments and Methods in Physics Research A 621 (2010) 134-150].

Electron rejection

Shower Starting Layer (SSL) \Rightarrow first layer with at least 4 hits and with the three following layers with at least 4 hits.

Electron cut :

Figure : Hit distribution for a 40 GeV electron run before (solid black line) and after (dashed green line) electron rejection.

Final selection

Figure : Number of hit distribution for 20 and 50 GeV pion runs before (black line) and after (red line) the selection.

Semi-digital information

- Threshold position : 0.114, 5.0, 15.0pC (0.1, 4, 12.5 MIP)
- Additional information on shower structure
 - 2nd and 3rd thresholds are in the core of the shower
- 1st threshold; 2nd threshold; 3rd threshold

Energy reconstruction

- N_i : number of hits per threshold
- Reconstructed energy :
 - $E_{reco} = \alpha N_1 + \beta N_2 + \gamma N_3$
 - $\alpha, \beta, \gamma = f(N_{hit})$
 - Chosen parametrisation : quadratic function of N_{hit}
 - α, β, γ determined using a χ^2 minimisation

$$\chi^{2} = \sum_{i=1}^{N} \frac{(E_{beam}^{i} - E_{reco}^{i})^{2}}{E_{beam}^{i}}$$
(1)

Figure : α , β and γ evolution in terms of the total number of hits.

Energy reconstruction

Fit with a Crystall Ball function (eq. 2)

Arnaud Steen (IPNL / Université Lyon 1)

Linearity and energy resolution

- Good linearity $\frac{\Delta E}{E} \leq 5\%$ (except at 5 GeV).
- Nice energy resolution without gain correction, local correction.

Summary

- The CALICE technological SDHCAL_GRPC prototype using 48 layers with its 6 λ_l was successfully tested at CERN
 - Power-Pulsing mode allows optimal conditions (temperature, noise) and it was the running mode during those different TB.
 - Excellent data quality was obtained in TB.
- Multi-Threshold mode brings significant improvement @ $E_{beam} \ge 40$ GeV
- Results with simple selection without data treatment (no gain correction, no local calibration ...) indicate a good single particle energy resolution for pions
- We intend to use the shower topology (neural networks, boost decision tree) to better reconstruct the energy and improve on the energy resolution.

Back-up

Pion selection

Electron-Pion separation

Electron-Pion separation

Crystall Ball function

$$f(x; \alpha, nth, \bar{x}, \sigma) = N \cdot \begin{cases} \exp(-\frac{(x-\bar{x})^2}{2\sigma^2}) & \text{for } \frac{x-\bar{x}}{\sigma} > -\alpha \\ A \cdot (B - \frac{x-\bar{x}}{\sigma})^{-nth} & \text{for } \frac{x-\bar{x}}{\sigma} \le -\alpha \end{cases}$$
(2)

where:

$$A = \left(\frac{nth}{|\alpha|}\right)^{nth} \cdot \exp\left(-\frac{|\alpha|^2}{2}\right)$$
(3)
$$B = \frac{nth}{|\alpha|} - |\alpha|$$
(4)

N is a normalization factor.

Energy distribution

Previous Analysis

• Principal component analyis (PCA)

- Principal axes computed \Rightarrow eigen values λ_1 , λ_2 , λ_3
- $\lambda_1 < \lambda_2 < \lambda_3$; $\lambda_i \equiv \sigma_i(hits)$ for the axis i
- Transverse ratio $TR = \frac{\sqrt{\lambda_1^2 + \lambda_2^2}}{\lambda_3}$

Interaction plan

- PCA applied also in each plane $\Rightarrow (\lambda_{1,p}, \lambda_{2,p})$
- Interaction plane = Layer with $\sqrt{\lambda_{1,p}^2 + \lambda_{2,p}^2} > 1.5 cm$ and $N_{hit} > 5$
- Density
 - $V1 = \frac{N_{hit}^{25}}{N_{hit}}$ where N_{hit}^{25} is the number of hit in the 5 \times 5*cm* arround the barycenter

$$- V2 = \frac{FD_{3D}}{\ln N_{hit}}$$

$$FD_{3D} = \frac{1}{|I|} \frac{\sum_{n \in I} \ln(N_{hit}/N_{cube}(n))}{\ln n}$$
(5)

 $I = \{2, 3, 4, 6, 8, 12, 16\}$ $N_{cube}(n) : \text{ number of cubes containing } n \times n \times n \text{ pads with at least one hit}$

Previous Analysis : beam and cosmic muon rejection

• $TR \ge 0.1 \Rightarrow 98\%$ rejection of muons

e/π separation

- Cut on V1.V2 for the electron rejection
- Negligible loss of pions at high energy
- Cut on V1.V2 depends on the energy :

Energy [GeV]	cut V1.V2
5	0.065
7.5 - 15	0.06
20 - 25	0.055
30 - 40	0.05
50 - 60	0.045
70 — 80	0.04

Binary mode : Linearity & energy resolution

- Additional cut for leakage reduction:
 - shower starting layer < 15

•
$$\frac{N_{hit \in last \ 7 \ layers}}{N_{hit}} < 0.15$$

•
$$E_{reco} = (C + DN_{hit}) \times N_{hit}$$

• Energy resolution increases above 60*GeV*

Multi-threshold mode : Linearity & energy resolution

• Significant impact on the energy resolution at high energy

