Precise Higgs Mass Measurement using π^0 Reconstruction

Brian van Doren

Department of Physics and Astronomy University of Kansas

vandoren@ku.edu

14 Nov 2013

Motivation

Mass Measurements

- Kinematic Constraint using π^0 Mass
- Probability Density Approach
- ${f 3}$ Higgs Mass using Reconstructed π^0 's
 - "Strawman" Reconstruction
 - Using π^0 Reconstruction
- Systematic Uncertainty
 - In situ HCAL Calibration
 - Matching Photons with π^0 's

Conclusion

Motivation

Why π^0 's and Higgs?

- High precision measurements test internal consistency of known laws of nature
- Dominant Higgs production at $\sqrt{s} = 1$ TeV: $e^+e^- \rightarrow \nu_e \bar{\nu}_e H$
- Particle Flow provides information about individual particles (full four-vector)
- Combined with prior information about how particles decay, can reconstruct π^{0} 's from photons in an event to reduce measurement uncertainty.

Higgs Production at 1 TeV

• Higgs production: $e^+e^- \rightarrow \nu_e \bar{\nu}_e H$ Total cross section = 734 fb Assuming polarization -80% e^- , 20% e^+ Will consider hadronic decays: $H \rightarrow q\bar{q}, H \rightarrow WW, H \rightarrow ZZ, H \rightarrow \gamma Z, H \rightarrow gg$ Total luminosity of 1 ab⁻¹ expect 396k events before cuts

Outs

Semileptonic Heavy Flavor Decays $c \rightarrow s l \bar{\nu}, b \rightarrow c l \bar{\nu}$ Exclude $H \rightarrow ZZ \rightarrow IIII$ (four lepton) Total Higgs events approx 147k

Motivation

Why Focus on π^0 's in a Higgs Event?

- 95% of photons from π^0 's
- 14.5 π^0 's per event
- Approx 56% of energy statistical variance per event due to photon uncertainty. Large differences event-to-event.
- Using π⁰ mass constraints can reduce variance of photon four-vectors

Motivation

- Mass Measurements
 - Kinematic Constraint using π^0 Mass
 - Probability Density Approach
- 3 Higgs Mass using Reconstructed π⁰'s
 "Strawman" Reconstruction
 Using π⁰ Reconstruction
 - Systematic Uncertainty
 In situ HCAL Calibration
 - Matching Photons with π^0 's
- 5 Conclusion

Toy Monte-Carlo Environment

Energy response

$$\sigma_{E-ECAL}/E = 16\%/\sqrt{E} \oplus 1\%$$

$$\sigma_{E-HCAL}/E = 45\%/\sqrt{E} \oplus 1.7\%$$

• Tracker response

$$\sigma_{1/p_{t-tracker}} = a \oplus b/(p_t \cdot \sin \theta)$$
$$a = 2 \times 10^{-5}, b = 1 \times 10^{-3}$$

Angular response

$$\sigma_{\theta} = 0.5 mrad$$

 $\sigma_{\phi} = \sigma_{\theta} / \sin \theta$

Kinematic Constraint using π^0 Mass

Traditional Method

- ~ 95% of photons are product of $\pi^0 \rightarrow \gamma \gamma$ process. Use this information to reconstruct the π^0 's and improve uncertainty.
- Perform mass constrained fit by adjusting measured photon four-vectors to minimize χ^2 subject to the constraint C

$$\chi^{2} = \left(\frac{E_{1}^{f} - E_{1}^{m}}{\sigma_{E_{1}}}\right)^{2} + \left(\frac{E_{2}^{f} - E_{2}^{m}}{\sigma_{E_{2}}}\right)^{2} + \left(\frac{\theta_{1}^{f} - \theta_{1}^{m}}{\sigma_{\theta_{1}}}\right)^{2} + \left(\frac{\theta_{2}^{f} - \theta_{2}^{m}}{\sigma_{\theta_{2}}}\right)^{2} + \left(\frac{\phi_{1}^{f} - \phi_{1}^{m}}{\sigma_{\phi_{1}}}\right)^{2} + \left(\frac{\phi_{2}^{f} - \phi_{2}^{m}}{\sigma_{\phi_{2}}}\right)^{2} C = (\mathbf{p}_{\gamma_{1}} + \mathbf{p}_{\gamma_{2}})^{2} - m_{\pi^{0}}^{2} = 0$$

How Does it Perform?

Consider an example: Four 1.25 GeV π^0 's with invariant mass 5 GeV and zero total momentum.

- Naive analysis using double gaussians shows a decrease in mass uncertainty from 4.09 MeV to 2.41 MeV
- Note that both are biased (π^0 fitting especially so)

Improvement: Event-by-Event Weighting

A detector like ILD can estimate the measurement uncertainty for each identified particle. Propagate this uncertainty to the mass calculation

$$M^2 = \sum_{i=1}^n m_i^2 + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^n E_i E_j - \cos heta_{ij} \sqrt{E_i^2 - m_i^2} \sqrt{E_j^2 - m_j^2}$$

$$\sigma_M = \frac{1}{2M} \sqrt{\sum_i^n \left(\frac{d(M^2)}{dE_i} \sigma_{E_i}\right)^2}$$

Then perform inverse variance weighted mean of the mass measurements from each event

$$M_{avg} = rac{\sum M_i / \sigma_{M_i}^2}{\sum 1 / \sigma_{M_i}^2}$$

$$\sigma_{M_{avg}} = \sum \frac{1}{1/\sigma_{M_i}^2}$$

Improvement: Event-by-Event Weighting

Performing weighted mean allows improved precision *and* cross-checks that the results are acceptable

Standard Reconstruction

• Nearly same σ_m : 4.09 \rightarrow 4.12 MeV

•
$$\chi^2/df = 9915/9999$$

(-0.61 σ)

Using $\pi^{\rm 0}$ Reconstruction

• Improved σ_m : 2.41 \rightarrow 1.91 MeV

•
$$\chi^2/df = 10353/9999$$

(+2.49 σ)

 π^0 reconstruction benefits from weighted mean due to event-by-event variation of uncertainty. Note that χ^2/df for π^0 fitting is suspect. Why?

Asymmetric χ^2 and Errors

Minimization packages assume a χ^2 that is symmetric and report errors assuming a parabolic minimum. This is clearly not the general case for π^0 's.

Mass Measurements Kinematic Constraint using π^0 Mass

χ^2 Minimum is Biased but <u>not</u> Consistent

Mass Measurements

- Kinematic Constraint using π^0 Mass
- Probability Density Approach
- 3 Higgs Mass using Reconstructed π⁰'s
 "Strawman" Reconstruction
 Using π⁰ Reconstruction
 - Systematic Uncertainty
 In situ HCAL Calibration
 Matching Photons with π⁰'s
- 5 Conclusion

Reduce Number of Variables

Simplify the π^0 mass constraint and χ^2 expressions by introducing new variable:

$$egin{array}{rcl} z&=&2(1-\cos\Psi_{12})\ &=&2(1-\cos heta_1\cos heta_2-\sin heta_1\sin heta_2\cos\Delta\phi) \end{array}$$

Where Ψ_{12} is the opening angle of the photons. The measured information now is E_1 , E_2 , and z. The constraint is expressed as

$$m_{\pi^0}^2 = E_1 E_2 z$$

Event Mass as Probability Distribution

• To combat asymmetric errors and inconsistent bias, express the per event mass measurement as a probability distribution

$$p(m) = \int \delta[m - M(\mathbf{x})]f(\mathbf{x})d\mathbf{x}$$

where

p(m) is the probability density of a particular mass value

 \boldsymbol{x} is the vector of all particle four-vector tuples

 $f(\mathbf{x})$ is the joint probability distribution of all four-vector tuples in the event

 $M(\mathbf{x})$ is the calculated mass due to \mathbf{x}

 Use these per event pdf's of p(m) to calculate Higgs mass and uncertainty.

Bayesian Model for Kinematic Constraints

For a single π^0 characterized by E_1, E_2, z drawn from normal distributions:

$$E_1 \sim N(\mu_1, \sigma_1), \ E_2 \sim N(\mu_2, \sigma_2), \ z \sim N(\mu_z, \sigma_z)$$

What is the probability that the model parameters produce this measurement (what is posterior distribution of the model given the data)?

$$P(\mu_1, \mu_2, \mu_z | E_1, E_2, z) = \frac{P(E_1, E_2, z | \mu_1, \mu_2, \mu_z) P(\mu_1, \mu_2, \mu_z)}{P(E_1, E_2, z)}$$

where the probability of the measurement given the model is

$$P(E_1, E_2, z | \mu_1, \mu_2, \mu_z) = N(E_1 - \mu_1, \sigma_1)N(E_2 - \mu_2, \sigma_2)N(z - \mu_z, \sigma_z)$$

and the prior probability of the model is the mass contraint

$$P(\mu_1, \mu_2, \mu_z) = \delta(\mu_1 \mu_2 \mu_z - m_{\pi^0}^2)$$

Combine π^0 PDF with other particles

 Contributions to event p(m) from each particle are independent. Can separate π⁰ from non-π⁰ joint pdf's

$$f(\mathbf{x}) = f_{\pi^0}(\mathbf{x}_{\pi^0}) f_{other}(\mathbf{x}_{other})$$

• Non- π^0 contributions are normally distributed and can be modeled as single gaussian.

$$p(m) = \int \delta(m' - M(\mathbf{x}_{\pi^0}, \mathbf{x}_{other^*})) f(\mathbf{x}_{\pi^0}) p_{other}(m - m') d\mathbf{x}_{\pi^0} dm'$$

*p*_{π⁰}(*m*) determined via Monte-Carlo integration. Final *p*(*m*) is convolution of the two groups

$$p(m) = \int p_{\pi^0}(m') p_{other}(m-m') dm'$$

* x_{other} set to measured values

Minimum Log-Likelihood

- Each event is assigned a likelihood function $p_i(m)$
- Minimum log-likelihood is found for subsets of the events
- This allows cross-check for consistent bias

How Does This Perform?

Four π^0 event with invariant mass of 5 GeV (10,000 events):

Reconstruction	σ_M (MeV)	χ^2/df
Double Gaussian	4.12	
Dbl Gaussian w/ π^0 Reco	2.41	
Var Weighted w/ π^0 Reco	1.91	101353/9999
Log-Likelihood w/ π^0 Reco	1.75	199.4/196

Note that χ^2/df for π^0 log-likelihood is now acceptable

- 1 Motivation
- 2 Mass Measurements
 - Kinematic Constraint using π^0 Mass
 - Probability Density Approach
- 3 Higgs Mass using Reconstructed π⁰'s
 "Strawman" Reconstruction
 - Using π^0 Reconstruction
 - Systematic Uncertainty
 - In situ HCAL Calibration
 - Matching Photons with π^0 's

5 Conclusion

Higgs Mass

Hadronic decay of: $e^+e^- \rightarrow \nu_e \bar{\nu}_e H$ at 1 TeV $H \rightarrow q\bar{q}$ $H \rightarrow WW$ $H \rightarrow 77$ $H \rightarrow \gamma Z$ $H \rightarrow gg$

> Cut heavy flavor semileptonic decays

Figure: "Strawman" reconstruction $e^+e^- \rightarrow \nu_e \bar{\nu}_e H$, statistical uncertainty only, assuming perfect reconstruction. $\sigma_M = 11.1 \text{ MeV per } 250 \text{ fb}^{-1}$

- 1 Motivation
- 2 Mass Measurements
 - Kinematic Constraint using π^0 Mass
 - Probability Density Approach
- 3 Higgs Mass using Reconstructed π⁰'s
 "Strawman" Reconstruction
 - Using π^0 Reconstruction
 - Systematic Uncertainty
 - In situ HCAL Calibration
 - Matching Photons with π^0 's
- 5 Conclusion

Higgs Mass using Reconstructed π^0 's Using π^0 Reconstruction

Effects of π^0 Reco on Higgs Mass

Minimum log-likelihood applied to $e^+e^- \rightarrow \nu_e \bar{\nu}_e H$:

Statistical Higgs Mass Uncertainty

Similarly to the four π^0 example, the best Higgs mass resolution (statistical) can be obtained with log-likelihood fit and the worst resolution is from a double gaussian

Reconstruction	σ_M (MeV)	per 1 ab $^{-1}$
Double Gaussian	11.1	5.5
Dbl Gaussian w/ π^0 Reco	9.84	4.92
Var Weighted	8.65	4.32
Var Weighted w/ π^0 Reco	7.55	3.78
Log-Likelihood w/ π^0 Reco	7.32	3.66

- Motivation
- 2 Mass Measurements
 - Kinematic Constraint using π^0 Mass
 - Probability Density Approach
- Biggs Mass using Reconstructed π⁰'s
 "Strawman" Reconstruction
 Using π⁰ Reconstruction
- Systematic Uncertainty
 In situ HCAL Calibration
 Matching Photons with π⁰'s
 - Conclusion

In situ HCAL Calibration

- Statistical uncertainty is of similar order to the expected systematic uncertainty and can be improved with in situ HCAL calibration
- Example: Adjust the HCAL response linearly by minimizing:

$$\chi^2(M,g) = \sum_i \left(\frac{m_i(g) - M}{\sigma_{m_i}}\right)^2$$

g is the linear adjustment to the HCAL energy response (near 1.0) $m_i(g)$ is the calculated mass adjusted by the HCAL response

• Method applicable to Higgs, Z, and W (with proper width convolution)

Skew	$\Delta \sigma_M^2$	Skew	g fit	Results are per 250 fb $^{-1}$
HCAL	percent	M_H GeV	± 0.0014	of the Higgs sample. Po-
1.01	+0.6	+0.056	1.0084	tential many-fold increase
1.02	+1.2	+0.106	1.0185	when considering all clean
1.04	+2.4	+0.204	1.0381	hadronic decaying events.

- Motivation
- 2 Mass Measurements
 - Kinematic Constraint using π^0 Mass
 - Probability Density Approach
- Biggs Mass using Reconstructed π⁰'s
 "Strawman" Reconstruction
 Using π⁰ Reconstruction
- Systematic Uncertainty
 In situ HCAL Calibration
 - Matching Photons with π^0 's
 - Conclusion

Systematic Uncertainty Matching Photons with π^{0} 's

Matching Photons with π^0 's

Figure: Example photon pairing solution. Segments between photons represent fit probability. Blue segments are correct. Combinatorics of pairing photons with parent $\pi^{\rm 0}{}^{\rm \prime}{\rm s}$ is tractable

Attempt fit on all pairs of photons per event

Select solution that minimizes sum of fit χ^2 and maximizes number of $\pi^{\rm 0's}$

In full simulation 92 GeV $Z^0 \to q\bar{q},\,75$ - 80% of π^0 energy is correctly recovered

Incorrect pairings increase bias but increase uncertainty only moderately ($\sim 6\%)$

Room for improvement of statistical treatment

Conclusion

- Measurements of Higgs (and other) mass in future e⁺e⁻ colliders will be very precise
- Techniques to reduce statistical uncertainties

Event-by-Event Likelihood Fitting Intermediate Particle (π^0) Reconstruction

Method	σ_{M_H} (MeV)
Double-Gaussian	± 5.5
Variance Weighted	±4.32
χ^2 Minimum π^0 Reco	±3.78
Log-likelihood π^0 Reco	± 3.66

- Acceptance, backgrounds, and reconstruction efficiency will degrade performance, but previous full simulation Z⁰ study shows improvements can be achieved.
- Future Work

Full simulation w/ log-likelihood Improvements to photon pairing algorithm

Brian van Doren (KU)

Precise Higgs Mass Measurement