Feasability of a minimum bias analysis of $e^+e^- \rightarrow ZH \rightarrow q\bar{q} + X$ at 250 GeV

Y. Haddad haddad@llr.in2p3.fr

LLR, École polytechnique, IN2P3-CNRS

14 novembre 2013

Analysis 00000000 Conclusion

Outline

- Introduction
 Reconstruction
- Analysis
- 4 Conclusion

Introduction O●O	Reconstruction O	Analysis 0000000	Conclusion O
	Motivation	ı	
 ZH is the d process @ 2 Signal : e⁺o used for thi 	ominant Higgs production 50 GeV $e^- \rightarrow Z^* \rightarrow ZH \rightarrow 2j + X$ is s analysis $e^* \rightarrow z = z^*$	500 SM all ffn Zh WW fusion ZZ fusion S200 0100 0200 400 60 \S (0	00 800 1000 GeV)
 Reconstruct only, without 	t the M_{jj}^{recoil} from the Z dijet ut measuring the Higgs products	n des modes	4L3/5
• Increase $(\sim 6\%)$	e the Higgs statitics $\rightarrow 70\%$ Z BR for (II)recoil)	0 80 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17.149

- Model independent of Higgs measurement.
- Very difficult @250 GeV (ZZ/WW background)

rr.

Έ.

4.43%

Ħ

Z boson decay modes

Introduction OO•	Reconstruction O	Analysis 0000000	Conclusion O
	Motivation		
 ZH is the daprocess @ 2 Signal : e⁺aused for this 	cominant Higgs production 50 GeV $e^- \rightarrow Z^* \rightarrow ZH \rightarrow 2j + X$ is analysis e^*	500 Galarian 500 500 500 500 500 500 500 50	0 800 1000 ieV)
 Reconstruct only, without Increase (~ 6%) 	the M_{jj}^{recoil} from the Z dijet it measuring the Higgs products. the Higgs statitics $\rightarrow 70\%$ Z BR for (II)recoil)	diss Boson decay modes 400 400 400 400 400 400 400 400 400 400	H -> qqh ~70%
Model i	ndependent of Higgs measurement.	T (0.64% 1.27%	e.

• Very difficult @250 GeV (ZZ/WW background)

Z boson decay modes

Reconstruction	
•	

Fast Simulation

- Reconstruct only the MCparticles stable @ the generator level.
- Particle 4-Momentum is smeared following the ILD performance benchmarks :
 - Expected tracking performance (for P smearing) : $\sigma_{1/p_T} \approx 2 \times 10^{-5} \text{ GeV}^{-1}$
 - Expected calorimetry (for *E* smearing) :
 - $h^0 \rightarrow \sigma_E/E \sim 0.1 + 0.5\sqrt(E)$
 - $\gamma \rightarrow \sigma_E/E \sim 0.01 + 0.1\sqrt{(E)}$
- Reconstructed particle \rightarrow PFO
- Only PFO with $|\eta| < 2.66$ and $p_t > 0.5~{\rm GeV}$ are reconstructed.

	Anaiysis	Conclusion
	•0000000	
	1	
IVIC Sa	mples	

- Main processes at $250 \; GeV: ZH$, W^+W^- , Z^0Z^0
- For qq(Recoil) analysis \rightarrow the main background : $W^+W^- \rightarrow 2j + X, \ Z^0Z^0 \rightarrow 2j + X$
- 2012 DBD MC Generator samples (WHIZARD Generator)

$N_{jet} \ge 2$	Nevents	σ (fb)	weight
		$e_L^- e_R^+$	$(L = 500 \ fb^{-1})$
$ZH \rightarrow 2j + X$	120409	346.01	1.41
WW(4j)	321376	18781.00	60.48
WW(sl)	181533	14874.30	52.30
ZZ(4j)	120088	1422.14	4.45
ZZ(sl)	178900	1402.06	6.46

- Considering (now) only $e_L^- e_R^+$ (Signal & background cross section are larger)
- Ask for at least 2 jets in the final stat.

Jet reconstruction & Jet pairing

- Durham jet clustering with fixed y_{cut} ; $y_{ij} = 2\min(E_i^2, E_j^2) \frac{(1-\cos\theta_{ij})}{Q^2}$
- The y_{cut} is fixed to 0.01, with E recombination scheme.
- Z boson di-jet ightarrow the jet pair which minimize $\chi 2 = (m_{jj} m_z)^2/\sigma_z^2$
- The jets are matched from the Z boson quarks (Gen level) \rightarrow Test the Jet pairing efficiency.
 - Only $\sim 20\%$ of di-jets are matched in $\Delta R < 0.4$
 - Highly depend in the jet clustering performance \rightarrow Should be optimized !!
- The recoil mass defined by; $m^2_{recoil} = s + m^2_{jj} 2p_z \sqrt{s}$

Yacine Haddad (LLR)

	Analysis	
	000000	

• The raw signal + background \rightarrow no cut applied.

- Only di-jet variables are not enought for a good background rejection \rightarrow use some Event Shape Variables ! !
 - Thrust : $\tau \equiv 1 \max_{\vec{n}} \left(\sum_{i} |\vec{p}_i \cdot \vec{n}| / \sum_{i} |\vec{p}_i| \right)$
 - Sphericity $\equiv (3/2) \min(\sum \mathbf{p}_L^2 / \sum \mathbf{p}^2)$
 - Acollinearity $\equiv \cos^{-1}(\mathbf{p_1} \cdot \mathbf{p_2}/|\mathbf{p_1}||\mathbf{p_2}|)$, Acoplanarity $\equiv |\phi_1 \phi_2|$

	Analysis	
	0000000	

MVA based selection

- Use of ROOT TMVA package \rightarrow Boosted Decision Tree (BDT)
- The input variables are;
 - N_{jet} , $\cos \theta_{jj}$, E, $E_{visible}$, χ^2 (from di-jet pairing)
 - Sphericity, thrust, ${
 m cos} heta_{thrust}$
 - $Y_{23}, Y_{34}, Y_{45} (Y_{ab} = \min\{y_{cut} | a \ jets \leftarrow b \ jets\})$
 - Acollinearity, Acoplanarity.
- Train the MVA for each background category ightarrow 4 BDT output variables.

MVA results

	Results (Very	proliminary)	
000	0	00000000	0
		Analysis	

60

A naive cut on the BDT output variables only (not optimized yet!) :

category	BDT cut	ε_{sig}	$(1 - \varepsilon_{bkg})$
$ww \rightarrow h$	> 0.8	58%	98.2%
$ww \rightarrow sl$	> -0.5	96%	95%
$zz \rightarrow h$	> 0.6	44%	94%
$zz \rightarrow sl$	> 0.6	88%	94.5%

Results (Very preliminary)

Results :

- Combine the previous cuts ⇒ Clear peak @ Higgs mass :
- Significance $(S/\sqrt{S+B} = 101.44)$
- Signal efficiency after cuts : $\sim 13\%$
- Over 98% of background rejection.

sample	before cuts	after cuts	efficiency
ZH	120409	16613	13.8%
$ww \rightarrow h$	321376	2225	0.6%
$ww \rightarrow sl$	120088	246	0.1%
$zz \rightarrow h$	120088	3085	2.5%
$zz \rightarrow sl$	178900	967	0.5%

	Analysis	
	0000000	

Results (Very preliminary)

A selection in m_{recoil} can provide an unbiased (or minimum bias) sample of Higgs

Higgs measurements (BR ...) \rightarrow To be done !!

Conclusion & Outlook

- Clear Higgs peak with good significance
- Still some improuvements are needed :
 - Jet clustering & jet pairing algorithms
 - Optimize the MVA cuts (use additional variables ...)
- Very reliminary results BUT Very encouraging !!

- NEXT STEP :
 - Results from a fast simulation \rightarrow Do it in Full Simulation $!\,!$