International Workshop on Future Linear Colliders

LCWS13

11-15 November 2013, The University of Tokyo

Non-resonant production of $b\bar{b}\,W^+W^-$ at the top-antitop threshold

Instituto de Física Corpuscular (IFIC)

A. Hoang, C. Reisser, PRF arXiv:1002.3223 [hep-ph]

M. Beneke, B. Jantzen, PRF arXiv:1004.2188 [hep-ph]

B. Jantzen, PRF arXiv:1307.4337 [hep-ph]

Outline

- I Top-pair production at linear colliders near threshold theory status
- II Non-resonant (electroweak)
 NLO contributions
- III Non-resonant NNLO contributions
- IV Results & comparisons
- V Summary

I. Top-pair production near threshold

Future linear colliders (ILC/CLIC)

with $\sqrt{s} \gtrsim 2m_t \simeq 350~{\rm GeV}$ will produce lots of $t\bar{t}$ pairs, allowing for a threshold scan of the top cross section

 \hookrightarrow Precise determination of the top mass m_t , the width Γ_t and the Yukawa coupling λ_t

$$ightarrow$$
 $\delta m_t \simeq$ 30 MeV

 $\longrightarrow m_t$ is a crucial input for electroweak precision observables!

Requires also precise theoretical prediction $\Rightarrow \delta\sigma/\sigma \sim 3\%$

QCD corrections are known (almost) up to NNLL/NNNLO, but electroweak (NLO) contributions due to top decay missing until recently!

Note! once EW effects are turned on, the physical final state is $W^+W^-b\bar{b}$

 $\Rightarrow \sigma(e^+e^- \to W^+W^-b\bar{b})$ in the $t\bar{t}$ resonance region and allow for invariant-mass cuts on reconstructed t, \bar{t}

STATUS OF QCD CORRECTIONS

Decay $t \to bW^+$ with $\Gamma_t \approx 1.5 \text{ GeV} \gg \Lambda_{\text{QCD}}$ $\Rightarrow t\bar{t}$ is perturbative at threshold

Top quarks move slowly near threshold: $v = \sqrt{1 - \frac{4m_t^2}{s}} \sim \alpha_s \ll 1$ $\hookrightarrow \text{sum } \left(\frac{\alpha_s}{v}\right)^n$ from "Coulomb gluons" to all orders $\to \text{NRQCD}$

$$R = \frac{\sigma_{t\bar{t}}}{\sigma_{\mu^+\mu^-}} = v \sum_{n} \left(\frac{\alpha_s}{v}\right)^n \left(\{1\}_{LO} + \{\alpha_s, v\}_{NLO} + \{\alpha_s^2, \alpha_s v, v^2\}_{NNLO} + \dots\right)$$

Further RG improvement by summing also $(\alpha_s \ln v)^m$: LL, NLL, ... \rightarrow vNRQCD pNRQCD

NNLO QCD corrections
 Hoang, Teubner '98-99; Melnikov, Yelkhovsky '98;
 Yakovlev '98; Beneke, Signer, Smirnov '99;
 Nagano, Ota, Sumino '99; Penin, Pivovarov '98-99

NNLL
 Hoang, Manohar, Stewart, Teubner '00-01;
 Hoang '03; Pineda, Signer '06;
 Hoang, Stahlhofen '06-11

• NNNLO (full analysis soon...)

Beneke, Kiyo, Schuller '05-08

see Y. Kiyo's talk

STATUS OF QCD CORRECTIONS (cont.)

"threshold masses"

- missing QCD soft NNLL contributions small
- EW effects beyond LO and specially non-resonant effects give contributions at the level of the QCD uncertainty

(at LO:
$$E = \sqrt{s} - 2m_t \rightarrow E + i\Gamma_t$$
)

EFFECTS FROM TOP QUARK INSTABILITY BEYOND LO

• Resonant contributions to $e^+e^- \to W^+W^-b\bar{b}$ top and antitop close to the mass-shell

 Non-resonant (hard) corrections: account for the production of the bW pairs by highly virtual tops or diagrams with only one or no top

• power counting for finite width effects: $\frac{\Gamma_t}{m_t} \sim \alpha_{\rm EW} \sim \alpha_s^2 \sim v^2 \ll 1$

Effective field theory (EFT) for pair production of unstable particles near threshold, based on separation of resonant and nonresonant fluctuations

$$t \bar{t} \text{ production}$$
 operators $\mathcal{O}_p^{(k)}$ resonant contributions

4-electron operators
$$\mathcal{O}_{4e}^{(k)}$$

non-resonant contributions

Extract cross section for $e^+e^- \to W^+W^-b\bar{b}$ from appropriate cuts of the $e^+e^- \to e^+e^-$ forward-scattering amplitude

Electroweak effects at LO Fadin, Khoze (1987)

• Replacement rule: $E = \sqrt{s} - 2m_t \rightarrow E + i\Gamma_t$

⇒ unstable top propagator

$$\frac{i}{p^0 - \mathbf{p}^2/(2m) + i\Gamma_t/2} \longrightarrow \delta \mathcal{L} = \sum_{\mathbf{p}} \psi_{\mathbf{p}}^{\dagger} i \frac{\Gamma_t}{2} \psi_{\mathbf{p}}$$

Electroweak effects at NLO

- Exchange of "Coulomb photon": trivially extension of QCD corrections
- Gluon exchange involving the bottom quarks in the final state
 ⇒ these contributions vanish at NLO for the total cross section, Fadin, Khoze, Martin; Melnikov, Yakovlev (1994) also negligible if loose top invariant-mass cuts are applied; remains true at NNLO Hoang, Reisser (2005); Beneke, Jantzen, RF (2010)

• Non-resonant (hard) corrections to $e^+e^- \to W^+W^-b\bar{b}$ which account for the production of the Wb pairs by highly virtual tops or with only one or no top

Electroweak (non-trivial) effects at NNLO

• absorptive parts in the 1-loop matching coeffs. of the production operators (arising from bW cuts) Hoang, Reisser (2006)

⇒ reproduce interferences between double and single resonant amplitudes

- real part of hard one-loop EW corrections
- Kuhn, Guth (1992); Hoang, Reisser (2006)
- NNLO non-resonant contributions (gluon corrections to NLO ones)
 Exact computation is hard, but can compute dominant terms for moderate invariant mass cuts

II. Non-resonant (electroweak) NLO contributions

8/23

II. Non-resonant NLO contributions

Beneke, Jantzen, RF (2010)

- \Rightarrow cuts through $bW^+\bar{t}$ (see diagrams) and $\bar{b}W^-t$ (not shown) in the 2-loop forward scattering amplitude
- treat loop-momenta as hard:

$$p_t^2 - m_t^2 \sim \mathcal{O}(m_t^2) \gg \Sigma(p_t^2) \sim m_t^2 \alpha_{\text{EW}}$$

$$\to \Gamma_t = 0$$

ullet suppressed w.r.t. LO $(\sim v)$ by

$$\alpha_{\rm EW}/v \sim \alpha_s$$

 bW^+ from highly virtual top

 bW^+ without intermediate top

In terms of the invariant mass of the bW^+ system, $p_t^2 = (p_b + p_{W^+})^2$, $(p_t \to \text{also momentum of the top line for h1-h4})$ diagrams h1-h10 read:

$$\int_{\Delta^2}^{m_t^2} dp_t^2 \, (m_t^2 - p_t^2)^{1/2 - \epsilon} \, H_i \left(\frac{p_t^2}{m_t^2}, \frac{M_W^2}{m_t^2} \right)$$

with $\Delta^2 = M_W^2$ for the total cross section

Applying top invariant-mass cuts

Restrict invariant masses of the reconstructed t, \bar{t} : $|\sqrt{p_{t,\bar{t}}^2} - m_t| \leq \Delta M_t$ \hookrightarrow lower integration limit $\Delta^2 = m_t^2 - \Lambda^2$ where $\Lambda^2 = (2m_t - \Delta M_t)\Delta M_t$ We focus on loose cuts with $\Lambda^2 \gg m_t \Gamma_t$ (corresponding to $\Delta M_t \gg \Gamma_t$) \leadsto cut has no effect in the resonant contributions

[In contrast: for tight cuts with $\Lambda^2 \sim m_t \Gamma_t$ ($\Delta M_t \sim \Gamma_t$), non-resonant contributions vanish and cuts only affect the resonant contributions]

Relative sizes of EW NLO corrections with respect LO

LO includes resummation of Coulomb gluons $\propto (\alpha_s/v)^n$ $[\alpha_s^{\overline{\rm MS}}(30\,{\rm GeV})=0.142]$

$$\left[\alpha_s^{\overline{\rm MS}}(30\,{\rm GeV}) = 0.142\right]$$

Phase space matching

Alternative approach to compute non-resonant contributions

Hoang, Reisser, PRF (2010)

• Non-resonant contributions obtained for moderate invariant-mass cuts, $m_t\Gamma_t \ll \Lambda^2 \ll m_t^2$, as a series:

$$\frac{\Gamma_t}{\Lambda} \sum_{n,\ell,k} \left[\left(C(\alpha_s) \times \frac{m_t \Gamma_t}{\Lambda^2} \right)^n \times \left(\frac{\Lambda^2}{m_t^2} \right)^{\ell} \right] \times \left(\alpha_s \frac{m_t}{\Lambda} \right)^k \qquad n,\ell,k = 0, 1, \dots$$

- NLO, NNLO and (partial) N³LO contributions obtained (counting $\Lambda \sim m_t$) \checkmark
- \bullet Beyond NLO, phase space matching approach cannot be applied to larger cuts up to the total cross section \times
- Expansion of full NLO non-resonant contributions in $(\Lambda/m_t)^n$ agrees with first two terms in series above [higher powers receive contributions from diagrams h5-h10 with no top, not taken into account in the psm approach \rightarrow remainder contributions, small at NLO \checkmark]

III. Non-resonant NNLO contributions

Finite-width divergences in the resonant contributions

Resonant contributions obtained by assuming the top quarks are nearly on-shell (potential), but integrated over all momenta

 \longrightarrow uncancelled **UV-singularity** from hard momenta: $\Delta \sigma^{\text{NNLO}} \sim m_t^2 \frac{\alpha_s \Gamma_t}{\epsilon}$

Related to finite top width in EFT cut propagator

- for stable top $\to \pi \, \delta \left(p^0 \frac{\vec{p}^2}{2m_t} \right)$,
- for unstable top $\to \frac{\Gamma_t/2}{(p^0 \vec{p}^2/2m_t)^2 + (\Gamma_t/2)^2}$ Breit-Wigner, UV-behaviour changed!

These divergences must cancel with non-resonant (hard) NNLO terms, which arise from gluon corrections to NLO non-resonant diagrams h1-h10

Endpoint divergences in the non-resonant contributions

Endpoint divergences of the phase-space integration at $p_t^2 \to m_t^2$ (because $\Gamma_t = 0$ here):

 \hookrightarrow endpoint divergence <u>finite</u> in dim. reg.:

$$\int_{m_t^2 - \Lambda^2}^{m_t^2} \frac{\mathrm{d}p_t^2}{(m_t^2 - p_t^2)^{\frac{3}{2} + \epsilon}} = -\frac{2}{\Lambda} + \mathcal{O}(\epsilon)$$

 \hookrightarrow endpoint divergence $\propto \left| \frac{\alpha_s}{\epsilon} \right|$ from n=1:

$$\mu^{4\epsilon} \int_{m_t^2 - \Lambda^2}^{m_t^2} \frac{\mathrm{d}p_t^2}{(m_t^2 - p_t^2)^{1+2\epsilon}} = -\frac{1}{2\epsilon} + \ln\frac{\Lambda^2}{\mu^2} + \mathcal{O}(\epsilon)$$

Expand integrand in $(m_t^2 - p_t^2)/m_t^2 \iff$ asymptotic expansion of result in Λ/m_t

15/23

ENDPOINT-DIVERGENT NON-RESONANT NNLO DIAGRAMS

 \hookrightarrow expanded near endpoint \leadsto potential top momentum $p_t = p_b + p_W(+p_q)$

boxed diagrams \sim endpoint-singular $\frac{1}{\epsilon} - 2 \ln \frac{\Lambda^2}{\mu^2}$ terms from potential gluons

+ "finite" endpoint-divergent $\frac{m_t}{\Lambda}$ & $\frac{m_t^2}{\Lambda^2}$ terms from hard & potential gluons

Endpoint-divergent non-resonant NNLO contribution

 \hookrightarrow dominant contribution for small Λ (or small ΔM_t)

$$\begin{split} \sigma_{\text{non-res}}^{(2),\text{ep}} &= \frac{64\pi^2\alpha^2}{s} \, \frac{\Gamma_t^{\text{Born}}}{m_t} & \left[\frac{x = M_W^2/m_t^2}{C_{...}(s) = \gamma/Z \cdot \text{prop. \& e^{\pm}-coupl.}} \right] \\ &\times \left\{ \left[Q_t^2 \, C_{\gamma\gamma}(s) - 2Q_t v_t \, C_{\gamma Z}(s) + v_t^2 \, C_{ZZ}(s) \right] \left\{ 4N_{\text{c}} C_{\text{F}} \, \frac{\alpha_s}{\pi} \, \frac{m_t^2}{\Lambda^2} + \frac{6\sqrt{2}}{\pi^2} \left(\delta \Gamma_t^{(1)} - \frac{4C_{\text{F}}}{\pi} \alpha_s \right) \frac{m_t}{\Lambda} \right\} \right. \\ &+ N_{\text{c}} C_{\text{F}} \, \frac{\alpha_s}{4\pi} \, \left(\frac{1}{\epsilon_{\text{ep}}} + 2 \ln \frac{\mu_s^2}{\Lambda^2} \right) \left\{ \left[Q_t^2 \, C_{\gamma\gamma}(s) - 2Q_t v_t \, C_{\gamma Z}(s) + v_t^2 \, C_{ZZ}(s) \right] \frac{7 + 7x + 22x^2}{6(x - 1) \, (1 + 2x)} \right. \\ &+ \left. \frac{1}{3} a_t^2 \, C_{ZZ}(s) + \frac{1}{2} Q_t a_t \, C_{\gamma Z}(s) - \frac{1}{2} v_t a_t \, C_{ZZ}(s) \right. \\ &+ \left[Q_t Q_b \, C_{\gamma\gamma}(s) - \left(Q_t \, (v_b + a_b) + Q_b v_t \right) \, C_{\gamma Z}(s) + v_t \, (v_b + a_b) \, C_{ZZ}(s) \right] \frac{1 - 5x - 2x^2}{6(1 + x) \, (1 + 2x)} \\ &+ \left[Q_t \, C_{\gamma\gamma}(s) - \left(v_t + Q_t \, \frac{c_{\text{w}}}{s_{\text{w}}} \right) \, C_{\gamma Z}(s) + v_t \, \frac{c_{\text{w}}}{s_{\text{w}}} \, C_{ZZ}(s) \right] \frac{2 + 5x - 2x^2}{6x \, (1 + 2x)} \\ &- \left[Q_t \, C_{\gamma}(s) + v_t \, C_{Z}(s) \right] \left[\ln \left(\frac{2}{x} - 1 \right) + \frac{(1 - x) \, (1 - 2x - 23x^2)}{12x^2} \right] \frac{x}{4(1 - x)^3 \, (1 + 2x)} \right\} \right\} \end{split}$$

+ finite Λ -independent terms + $\mathcal{O}(\Lambda/m_t)$

Jantzen, PRF (2013)

- UV and IR singularities cancelled between diagrams ✓
- $1/\epsilon$ endpoint singularities & finite-width divergences cancel each other \checkmark
- comparison to HRR result: m_t^2/Λ^2 , m_t/Λ , $\Lambda^0 \ln(\Lambda^2)$.

Non-resonant NNLO contribution for total cross section

Alternative framework [Penin, Piclum, 2012] computes non-resonant contributions to the total cross section by expanding in

-0.005

-0.01 -0.015

-0.02

-0.025

$$\rho = 1 - M_W/m_t \approx 0.5$$

- at NLO, the first term in ρ deviates from the exact result by less than 5%
 - at NNLO

$$R_{nr}^{(1)} = \frac{N_c C_F \alpha_s}{\pi^2 \rho} \frac{\Gamma_t}{m_t} \left\{ \left[Q_e^2 Q_t^2 + \frac{2Q_e Q_t v_e v_t}{1 - x_Z} + \frac{(a_e^2 + v_e^2) v_t^2}{(1 - x_Z)^2} \right] \right.$$

$$\times \left[\left(\frac{3L_E}{4} + \frac{3}{2} + 6 \ln 2 \right) \pi^2 + (18 + 24 \ln 2) \rho^{1/2} \right]$$

$$+ \frac{1}{s_w^4} \left[\frac{22}{3} + \frac{17\pi^2}{6} - \frac{17}{2} \ln 2 + (2 - 3\pi^2 + 9 \ln 2) \frac{3\sqrt{2}}{4} \ln \left(1 + \sqrt{2} \right) \right.$$

$$- \frac{27\sqrt{2}}{8} \left(\ln^2 \left(1 + \sqrt{2} \right) + \text{Li}_2 \left(2\sqrt{2} - 2 \right) \right) \left[\rho^{1/2} + \mathcal{O}(\rho) \right].$$

$$L_E = \ln \left(\frac{\sqrt{E^2 + \Gamma_t^2}}{\rho m_t} \right) \rightarrow \text{infrared regularization dependent term. But dim. reg.}$$

used for the resonant contributions, not clear how to combine both

Moreover: infrared structure does not agree with that our (exact in ρ) result \rightarrow diagram missing in this computation

IV. Results & comparisons

Results for the non-resonant NNLO contributions

Perturbative expansion converges for loose cuts:

$$\alpha_s \, \frac{m_t^2}{\Lambda^2}$$
 @ NNLO $\ll \frac{m_t}{\Lambda}$ @ NLO $\iff \Lambda^2 \gg m_t \Gamma_t \sim m_t^2 \, \alpha_{\rm EW} \sim m_t^2 \, \alpha_s^2$

Inclusive top-pair production cross section

Inclusive top-pair production cross section

 $NNLL \ QCD + N^3LO \ non-resonant \ corrections$ Hoang, Stahlhofen (2013)

• resonant EW & QED corrections not included

IV. Summary

Resonant corrections (top and antitop close to mass shell)

- QCD contributions:
 - ✓ fixed-order approach: all N³LO pieces known (compilation of all contributions shall appear soon...)
 - ✓ RG improved calculation: NNLL almost complete (remaining piece small)
- Electroweak contributions known to NNLL accuracy

Theoretical uncertainties ~ 5% at NNLL, at N³LO?

3% theoretical uncertainty on the total cross section here seems realistic...

Non-resonant corrections (bW pairs from virtual tops or with only one or no top)

- computed at NLO for the total cross section and with top invariant-mass cuts
- ✓ Beyond: NNLO and NNNLO terms known only with top invariant mass cuts

In progress: NNLO corrections to total cross section, expected to be small (few percent at most), but can become very important below the peak region

include non-resonant corrections in future ILC top-quark mass measurement study

Backup slides

COMPARISON TO MADGRAPH/MADEVENT

 \hookrightarrow generated 10⁴ events for $e^+e^- \to W^+W^-b\bar{b}$ with MadGraph (MG) for $s=4m_t^2$, and analyzed dependence on the bW invariant-mass cut ΔM_t

EFT result: resonant LO+NNLO ($\alpha_s = 0$) + non-resonant NLO

Pedro Ruiz-Femenía · LCSW13 · Tokyo · 11-15 Nov 2013

$e^+e^- \to W^+W^-b\bar{b}$ tree-level cross section: energy dependence for different ΔM_t invariant-mass cuts

MG (full) points & error band,

EW NNLO tree-level contributions (solid-blue) [resonant + non-resonant],

only resonant contributions (dotted-black)

Non-QCD corrections beyond NNLO

Sizes of NNLL EW and non-resonant corrections

Hoang, Reisser, RF (2010)

NNLL QED effects

NNLL hard one-loop EW effects

NNLL finite lifetime corrections

Non-resonant corrections (NLL, NNLL, N³LL phase space matching contributions)

- psm contributions are the largest of the 4 classes of EW effects
- almost constant (small linear \sqrt{s} -dependence from γ, Z propagators)
- convergence of the psm procedure particularly good for larger ΔM_t

