

Detector optimisation studies => towards a new CLIC detector model

Lucie Linssen, CLICdp meeting, 14 November 2013

Motivation

Current CLIC detector models CLIC_ILD and CLIC_SiD:

- Were "fixed" end 2010 for CDR benchmark studies
- Were optimised for 3 TeV (+ vertex det. study for 500 GeV, 1.4 TeV)
- Are still being used for **all** our physics studies

We continue with CLIC_ILD and CLIC_SiD for physics studies, next ~1 year.

In parallel:

Ongoing/upcoming CLICdp (and LC in general) detector optimisation studies:

- Simulation studies on various (sub-detector) areas
- Lessons learned from hardware R&D
- Solve known issues (e.g. high-occupancy regions)

Software development:

• New DD4hep detector geometry package for HEP

time line

2013

CLIC detector optimisation studies

Vertex detector (SiD software) ECAL study (ILD software) Forward region (ILD software) Tracker radius etc. (... software)

...

. .

Draw conclusions on combined optimised detector model

DD4Hep development

Incl. pilot implementations FCAL region CLIC_ILD Calorimetry CLIC_SiD

DD4Hep validation

Incl. performance comparison for full concept

NEW CLIC detector model

Only one concept Implemented in DD4hep

Lucie Linssen, CLICdp meeting, 14 November 2013

2014

Detector optimisation → list

Already ongoing studies:

- Vertex detector optimisation
- ECAL optimisation studies (ILC+CLIC study)
- HCAL studies (ILD study)

Other optimisation studies:

- Reduce occupancies in various regions
- Forward region optimisation (with QD0 in or out)
- Main tracker and forward tracker
- Choice of the B-field (4-5 Tesla)
- Overall aspect ratio, barrel endcap transition

Reconstruction performance improvements:

- Improvements in electron and photon reconstruction in Pandora
- Improved jet/particle reconstruction at the edge of the tracking acceptance

Some references

CLIC CDR detector models:

CLIC_ILD geometry: LCD-note-2011-002 CLIC_SID geometry: LCD-note-2011-009

Occupancy studies for the CDR:

LCD-Note-2011-021 (with CLIC_ILD) LCD-Note-2011-029, LCD-Note-2013-006 (TPC only) PhD thesis Christian Grefe (with CLIC_SiD)

Optimisation of vertex and forward tracking layout in view of background:

LCD-Note-2011-031 http://arxiv.org/abs/arXiv:1203.0942

Forward region layout and engineering aspects:

PhD thesis Andre Sailer Accelerator CDR, physics&detector CDR

PandoraPFA performance with CLIC detectors

LCD-Note-2011-028

Already ongoing studies

Already ongoing studies:

Vertex detector optimisation

https://ilcagenda.linearcollider.org/contributionDisplay.py?contribId=312&confId=6000

ECAL optimisation studies (ILC+CLIC study)

e.g. <u>https://ilcagenda.linearcollider.org/contributionDisplay.py?contribId=68&confId=6000</u> and several other studies presented at this workshop

HCAL studies (ILD study)

Vertex detector optimisation

Study flavour tagging performance for different vertex layouts

- CDR geometry
- Spiral geometry
- Double-spiral geometry
- .. With more material

Uses input from hardware R&D

Will impact on:

- Vertex detector layout
- Tracking strategies
- Flavour-tagging strategies

ECAL optimisation studies

Study of jet/particle performance, Pandora for different ECAL layouts

- Technology Silicon and Scintillator
- # layers in depth
- Transverse granularity
- Granularity at different depth
- Understanding resolution
- ECAL radius
- Parametrisation of results, incl. cost

Study already very advanced

Questions ? Comments ? Ideas ?

Similar ECAL studies are ongoing in CALICE and ILD

HCAL studies (ILD study)

A few words by from Mark about the upcoming ILD study (e.g. vary # layers and granularity in HCAL)

HCAL depth was studied for CDR. Can probably be reduced a bit.

Questions ? Comments ? Ideas ?

Lucie Linssen, CLICdp meeting, 14 November 2013

"to do" list (optimisation)

Other optimisation studies:

- Reduce occupancies in various regions
- Forward region optimisation (with QD0 in or out)
- Main tracker and forward tracker
- Choice of the B-field (4-5 Tesla)
- Overall aspect ratio, barrel endcap transition

Questions ? Comments ? Ideas ?

Occupancies

Occupancies are (too) high in certain regions of CLIC_ILD and CLIC_SiD

Possible mitigation by careful design:

• E.g. low-angle region of calorimetry endcaps

Detector technologies need to be adapted:

- Inner strip tracking regions
 - => move to pixels or strixels (e.g. look what CMS is doing)

Table 10.1: Overview of readout details for the various subdetectors of the CLIC_ILD detector concept. Occupancies and data volumes are for a full bunch train and include charge sharing between pixels/strips. Safety factors of five and two are applied to the rates of the incoherent pairs and the $\gamma\gamma \rightarrow$ hadrons, respectively; except for the TPC, for which no safety factors have been applied. Occupancies averaged over entire subdetectors are compared to the maximum values obtained for the regions with the highest

Table 10.1 CDR Vol. 2

backgrounds.

time number number time average of stamping sampling cell to maximum of bits data resolution period size channe1s per hit volume occupancy $[mm^2]$ $[10^{6}]$ [ns] [ns] [%] [bit] [Mbyte] VTX barrel ~5 10 0.02×0.02 945 < 1.5 - 1.9 32 56 ~5 10 895 < 2.0 - 2.832 72 VTX endcap 0.02×0.02 FTD pixels 10 0.02×0.02 1570 0.1 - 1.0 32 ~5 6.3 160 - 290 48 FTD strips ~ 5 10 - 25 0.05×100 1.6 16 SIT ~5 10 - 25 0.05×90 1.0 100 - 174 16 30 17 - 17 SET ~5 10 - 25 0.05×438 5.0 16 150 ETD ~5 10 - 25 0.05×300 4.0 38 - 77 16 120 3^b _a 5 - 32 TPC 25 1×6 24 500 ECAL barrel 25 69.5 < 3 1 5×5 16 2090 ECAL endcap 25 5×5 43.2 60 - 150 16 1300 25 HCAL barrel 30×30 6.9 16 210 < 5 1 120 - 5200 HCAL endcap 25 30×30 1.8 16 54 25 HCAL rings 1 30×30 0.2 < 516 6.0 LumiCal 5 10 5×5 0.2600 - 6000 32 28 5 15600° BeamCal 10 8×8 0.1 32 15 25 1.4 24 MUON barrel 1 30×30 0.01 - 0.05< 0.0125 MUON endcap 30×30 2.4 0.12 - 10 24 < 0.01 1

^a By combining with different subdetectors in offline reconstruction 2 ns will be achieved.

^b The 3D TPC reads out 1000 voxels per channel for each bunch train.

^c All cells measure a signal for each bunch crossing.

Table 10.1 CDR Vol. 2	Table 10 Occupar Safety fa spectivel over enti- backgrounces	Drives some of the detector optimisation + technology development needs						or concept. kels/strips. adrons, re- s averaged he highest
		time	time		number	average	number	
		stamping	sampling	cell	of	to maximum	of bits	data
		resolution	period	size	channels	occupancy	per hit	volume
		[ns]	[ns]	[mm ²]	[10 ⁶]	[%]	[bit]	[Mbyte]
	VTX barrel	~ 5	10	0.02×0.02	945	< 1.5 - 1.9	32	56
	VTX endcap	~ 5	10	0.02×0.02	895	< 2.0 - 2.8	32	72
	FTD pixels	~ 5	10	0.02×0.02	1570	0.1 - 1.0	32	6.3
	FTD strips	~ 5	10 - 25	0.05×100	1.6	160 - 290	16	48
	SIT	~ 5	10 - 25	0.05×90	1.0	100 - 174	16	30
	SET	~ 5	10 - 25	0.05×438	5.0	17 - 17	16	150
	ETD	~ 5	10 - 25	0.05×300	4.0	38 - 77	16	120
	TPC	_a	25	1×6	3 ^b	5 - 32	24	500
	ECAL barrel	1	25	5×5	69.5	< 3	16	2090
	ECAL endcap	1	25	5×5	43.2	60 - 150	16	1300
	HCAL barrel	1	25	30×30	6.9	<5	16	210
	HCAL endcap	1	25	30×30	1.8	120 - 5200	16	54
	HCAL rings	1	25	30×30	0.2	<5	16	6.0
	LumiCal	5	10	5×5	0.2	600 - 6000	32	28
	BeamCal	5	10	8×8	0.1	15600°	32	15
	MUON barrel	1	25	30×30	1.4	0.01 - 0.05	24	< 0.01
	MUON endcap	1	25	30×30	2.4	0.12 - 10	24	< 0.01

^a By combining with different subdetectors in offline reconstruction 2 ns will be achieved.

^b The 3D TPC reads out 1000 voxels per channel for each bunch train.

^c All cells measure a signal for each bunch crossing.

CDR forward region optimisation

clc

For the CDR the forward region was optimised for:

- Placement of QD0 with high mechanical stability and close to the IP
 - → large impact on forward physics coverage
- Good forward coverage for electrons (ECAL + LumiCal + BeamCal)
- Minimise impact of background on vertex and tracker regions

Minimum θ-angle for tracking

Vertex detector layout was adapted to occupancy from beamstrahlung Conical part of beam-pipe => 4 mm steel

Pointing to IP

First measurement point does not have 4 mm steel part in front

This fixes the minimal tracking angle

Opening angle of the beam pipe: ~6.5° in both CLIC_ILD and CLIC_SiD Radius of first vertex layer: 31 mm in CLIC_ILD, 27 mm in CLIC_SiD Half-length of barrel vertex layers: 130 mm in CLIC_ILD, 98.5 mm in CLIC_SiD

Tracking vs. HCAL and muon coverage

CLIC_ILD tracking/calo coverage

CLIC SiD tracking/calo coverage

12

0 0.2 0.6 0.8 0.4 lcos(0)I Fe Yoke Coil - 5T W - HCAL 2.6 m Fe - HCAL Si - Tracker

Lucie Linssen, CLICdp meeting, 14 November 2013

Forward region optimisation (QD0 in or out)

Forward region optimisation

- Final focus QD0 inside or outside the detector ?
 - Trade-off between luminosity and detector acceptance
- Understand physics requirements for forward coverage
 - Triple Higgs study
 - ??
 - ??
- Impact on coverage in endcap calorimetry and muon detection

Main tracker and forward tracker Choice of the B-field Overall aspect ratio, barrel/endcap transition

Possible studies:

- Main tracker radius
- Tracker layout and number of layers
- Cell sizes (pixels / strips / large pixels)
- Trade-off: tracker radius ⇔ B-field ⇔ performance
- Trade-off: B-field ⇔ inner vertex radius ⇔ background ⇔ performance
- Consistent design among: vertex +forward tracker + main tracker

Final focusing QD0 in or out:

- length of experiment in Z is limited
- Opening of the detector on interaction point seems excluded
- Aspect ratio (transition between barrel and endcap) will be determined by tracker radius and yoke depth

(Collect all existing results/plot of performance across transition region)

Questions ? Comments ? Ideas ?

Reconstruction performance

Reconstruction performance improvements:

- Improvements in electron and photon reconstruction in Pandora
- Inclusion of BeamCal/Lumical data in the full-detector reconstruction
- Improved jet/particle reconstruction at the edge of the tracking acceptance

Lucie Linssen, CLICdp meeting, 14 November 2013

ideas and volunteers are welcome !

In most areas, this work can be done with, and profits of:

Please sign up for the CLIC workshop February 3-5(7) http://indico.cern.ch/conferenceDisplay.py?confld=275412

Lucie Linssen, CLICdp meeting, 14 November 2013